【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)分別寫(xiě)出直線的普通方程與曲線的直角坐標(biāo)方程;

(Ⅱ)已知點(diǎn),直線與曲線相交于兩點(diǎn),若,求的值.

【答案】(Ⅰ) 直線的普通方程為;曲線的直角坐標(biāo)方程為;(Ⅱ) .

【解析】

(Ⅰ)消去參數(shù)t得到直線的普通方程,利用,,可將曲線C的極坐標(biāo)化為直角坐標(biāo)方程;(Ⅱ)寫(xiě)出直線l的參數(shù)方程,代入曲線C中,利用參數(shù)t的幾何意義即可求得a值.

(Ⅰ)將為參數(shù))消去參數(shù)可得,

∴直線的普通方程為.

,得,

,,代入上式,得,

,

∴曲線的直角坐標(biāo)方程為.

(Ⅱ)將代入中,整理得,

設(shè),兩點(diǎn)對(duì)應(yīng)參數(shù)分別為,,則,,

,∴,又,

,∴,

,即,

解得,符合題意.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l 過(guò)點(diǎn),一個(gè)方向向量,則直線l 的方程是(

A.=0B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;

(2)若有兩個(gè)極值點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定橢圓 C : ,稱圓心在原點(diǎn),半徑為的圓是橢圓 C 伴隨圓”.若橢圓 C 的一個(gè)焦點(diǎn)為 F1(, 0) ,其短軸上的一個(gè)端點(diǎn)到 F1 的距離為

1)求橢圓 C 的方程及其伴隨圓方程;

2)若傾斜角 45°的直線 l 與橢圓 C 只有一個(gè)公共點(diǎn),且與橢圓 C 的伴隨圓相交于 M .N 兩點(diǎn),求弦 MN 的的長(zhǎng);

3)點(diǎn) P 是橢圓 C 的伴隨圓上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn) P 作直線 l1、l2,使得 l1、l2與橢圓 C 都只有一個(gè)公共點(diǎn),判斷l1l2的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)舉行促銷(xiāo)活動(dòng),有兩個(gè)摸獎(jiǎng)箱,箱內(nèi)有一個(gè)“”號(hào)球、兩個(gè)“”號(hào)球、三個(gè)“”號(hào)球、四個(gè)無(wú)號(hào)球,箱內(nèi)有五個(gè)“”號(hào)球、五個(gè)“”號(hào)球,每次摸獎(jiǎng)后放回,消費(fèi)額滿元有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),消費(fèi)額滿元有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),摸得有數(shù)字的球則中獎(jiǎng),“”號(hào)球獎(jiǎng)元、“”號(hào)球獎(jiǎng)元、“”號(hào)球獎(jiǎng)元,摸得無(wú)號(hào)球則沒(méi)有獎(jiǎng)金.

(Ⅰ)經(jīng)統(tǒng)計(jì),消費(fèi)額服從正態(tài)分布,某天有為顧客,請(qǐng)估計(jì)消費(fèi)額(單位:元)在區(qū)間內(nèi)并中獎(jiǎng)的人數(shù);

(Ⅱ)某三位顧客各有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),求其中中獎(jiǎng)人數(shù)的分布列;

(Ⅲ)某顧客消費(fèi)額為元,有兩種摸獎(jiǎng)方法,方法一:三次箱內(nèi)摸獎(jiǎng)機(jī)會(huì);方法二:一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),請(qǐng)問(wèn):這位顧客選哪一種方法所得獎(jiǎng)金的期望值較大.

附:若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了保障全國(guó)第四次經(jīng)濟(jì)普查順利進(jìn)行,國(guó)家統(tǒng)計(jì)局從東部選擇江蘇,從中部選擇河北. 湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國(guó)家綜合試點(diǎn)地區(qū),然后再逐級(jí)確定普查區(qū)域,直到基層的普查小區(qū).在普查過(guò)程中首先要進(jìn)行宣傳培訓(xùn),然后確定對(duì)象,最后入戶登記.由于種種情況可能會(huì)導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗(yàn).在某普查小區(qū),共有 50 家企事業(yè)單位,150 家個(gè)體經(jīng)營(yíng)戶,普查情況如下表所示:

普查對(duì)象類別

順利

不順利

合計(jì)

企事業(yè)單位

40

50

個(gè)體經(jīng)營(yíng)戶

50

150

合計(jì)

1)寫(xiě)出選擇 5 個(gè)國(guó)家綜合試點(diǎn)地區(qū)采用的抽樣方法;

2)補(bǔ)全上述列聯(lián)表(在答題卡填寫(xiě)),并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對(duì)象的類別有關(guān)”;

3)根據(jù)該試點(diǎn)普查小區(qū)的情況,為保障第四次經(jīng)濟(jì)普查的順利進(jìn)行,請(qǐng)你從統(tǒng)計(jì)的角度提出一條建議.

附:

0.10

0.010

0.001

2.706

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,將一塊直角三角形板置于平面直角坐標(biāo)系中,已知,點(diǎn)是三角板內(nèi)一點(diǎn),現(xiàn)因三角板中,陰影部分受到損壞,要把損壞部分鋸掉,可用經(jīng)過(guò)點(diǎn)的任一直線將三角板鋸成,設(shè)直線的斜率為.

1)用表示出直線的方程,并求出點(diǎn)的坐標(biāo);

2)求出的取值范圍及其所對(duì)應(yīng)的傾斜角的范圍;

3)求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),射線軸正半軸重合,射線在第一象限,且與軸正半軸的夾角為,在上有點(diǎn)列,在上有點(diǎn),已知,

1)求點(diǎn)的坐標(biāo);

2)求的坐標(biāo);

3)求面積的最大值,并求出此時(shí)的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若有兩個(gè)不同的零點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案