已知曲線上任意一點到直線的距離是它到點距離的倍;曲線是以原點為頂點,為焦點的拋物線.
(Ⅰ)求,的方程;
(Ⅱ)過作兩條互相垂直的直線,其中相交于點,相交于點,求四邊形面積的取值范圍.
(Ⅰ),;(Ⅱ).

試題分析:(Ⅰ)求 曲線,則設該曲線上某點,然后根據(jù)題目條件,得到關于的方程,再化簡即可得到.曲線可以根據(jù)拋物線的幾何性質得到,為拋物線焦點,從而得到;(Ⅱ)用點斜式設出的方程為,與拋物線方程聯(lián)立,即可得到關于點坐標的方程.再根據(jù)韋達定理即得到的長度.由題意可設的方程為,代入可得關于點坐標的方程.再根據(jù)韋達定理即得到的長度.因為,從而四邊形的面積為,經(jīng)化簡,通過基本不等式即可得到四邊形面積的取值范圍為.
試題解析:(Ⅰ)設,則由題意有,化簡得:.
的方程為,易知的方程為.                      4分
(Ⅱ)由題意可設的方程為,代入,
,則,
所以.           7分
因為,故可設的方程為,代入
,設,則,
所以.   10分
故四邊形的面積為

()
,因此
,當且僅當等號成立.
故四邊形面積的取值范圍為.                               13分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓E:=1()過點M(2,), N(,1),為坐標原點
(I)求橢圓E的方程;
(II)是否存在以原點為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的頂點在坐標原點,焦點為,點是點關于軸的對稱點,過點的直線交拋物線于兩點。
(Ⅰ)試問在軸上是否存在不同于點的一點,使得軸所在的直線所成的銳角相等,若存在,求出定點的坐標,若不存在說明理由。
(Ⅱ)若的面積為,求向量的夾角;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=kx+b與橢圓交于A、B兩點,記△AOB的面積為S.

(1)求在k=0,0<b<1的條件下,S的最大值;
(2)當|AB|=2,S=1時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在坐標原點,焦點在軸上,橢圓上的點到焦點距離的最大值為,最小值為
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點、,且線段的垂直平分線過定點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓直線與圓相切,且交橢圓兩點,是橢圓的半焦距,,
(Ⅰ)求的值;
(Ⅱ)O為坐標原點,若求橢圓的方程;
(Ⅲ) 在(Ⅱ)的條件下,設橢圓的左右頂點分別為A,B,動點,直線AS,BS與直線分別交于M,N兩點,求線段MN的長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線的兩條漸近線與拋物線的準線分別交于、兩點,為坐標原點,的面積為,則雙曲線的離心率(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線交拋物線兩點,則△(     )
A.為直角三角形B.為銳角三角形
C.為鈍角三角形D.前三種形狀都有可能

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、分別為雙曲線的左、右焦點,為雙曲線的左頂點,以為直徑的圓交雙曲線某條漸過線、兩點,且滿足,則該雙曲線的離心率為(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案