(16分)

已知數(shù)列中,且點在直線上.

 (1)求數(shù)列的通項公式;

 (2)若函數(shù)

求函數(shù)的最小值;

 (3)設(shè)表示數(shù)列的前項和.試問:是否存在關(guān)于的整式,使得

對于一切不小于2的自然數(shù)恒成立? 若存在,寫出的解析式,并加以證明;若不存在,試說明理由。

 

【答案】

 

(1)

(2)

(3)

【解析】解:(1)點在直線x-y+1=0上,

            即………………………………………2分

            且,數(shù)列{}是以1為首項,1為公差的等差數(shù)列

            ,同樣滿足,所以……4分

           (2)

                  ……6分

           

            所以f(x)是單調(diào)遞增,故f(n)的最小值是        ……10分

          (3),可得……12分

          

          

           ……

          

相加得:

,n≥2------------------15分

所以

故存在關(guān)于n的整式g(x)=n,使得對于一切不小于2的自然數(shù)n恒成立。----16分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年丹陽高級中學(xué)一摸)(15分)已知數(shù)列中,且點在直線上。

(1)求數(shù)列的通項公式;

(2)若函數(shù)求函數(shù)的最小值;

(3)設(shè)表示數(shù)列的前項和。試問:是否存在關(guān)于的整式,使得

對于一切不小于2的自然數(shù)恒成立? 若存在,寫出的解析式,并加以證明;若不存在,試說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市吳淞中學(xué)高三第一次月考數(shù)學(xué)卷 題型:解答題

(16分)
已知數(shù)列中,且點在直線上.
(1)求數(shù)列的通項公式;
(2)若函數(shù)
求函數(shù)的最小值;
(3)設(shè)表示數(shù)列的前項和.試問:是否存在關(guān)于的整式,使得
對于一切不小于2的自然數(shù)恒成立? 若存在,寫出的解析式,并加以證明;若不存在,試說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省徐州市高三期中模擬數(shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列中,且點在直線上。

(1)求數(shù)列的通項公式;

(2)求函數(shù)的最小值;

(3)設(shè)表示數(shù)列的前項和。試問:是否存在關(guān)于的整式,使得

對于一切不小于2的自然數(shù)恒成立?若存在,寫出的解析式,并加以證明;若不存在,試說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省高三年級暑期檢測數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)

已知數(shù)列中,且點在直線上.

(1)求數(shù)列的通項公式;

(2)若函數(shù)求函數(shù)的最小值;

 (3)設(shè)表示數(shù)列的前項和.試問:是否存在關(guān)于的整式,使得

對于一切不小于2的自然數(shù)恒成立? 若存在,寫出的解析式,并加以證明;若不存在,試說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江蘇省高二上學(xué)期期中模擬考試數(shù)學(xué)試卷 題型:解答題

(本題滿分16分)

已知數(shù)列中,且點在直線上。

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若函數(shù)求函數(shù)的最小值;

(Ⅲ)設(shè)表示數(shù)列的前項和。試問:是否存在關(guān)于的整式,使得對于一切不小于2的自然數(shù)恒成立? 若存在,寫出的解析式,并加以證明;若不存在,試說明理由。

 

查看答案和解析>>

同步練習(xí)冊答案