已知橢圓的兩個焦點(diǎn)分別為,離心率.
(1)求橢圓的方程;
(2)設(shè)直線)與橢圓交于、兩點(diǎn),線段 的垂直平分線交軸于點(diǎn),當(dāng)變化時,求面積的最大值.
(1);(2).

試題分析:(1)求橢圓的標(biāo)準(zhǔn)方程,要找兩個等式以確定,本題中有焦點(diǎn)為,說明,又有離心率,即,由此再加上可得結(jié)論;(2)直線與圓錐曲線相交問題,又涉及到交點(diǎn)弦,因此我們都是把直線方程(或設(shè)出)與橢圓方程聯(lián)立方程組,然后消去(有時也可消去)得關(guān)于(或)的一元二次方程,再設(shè)交點(diǎn)為坐標(biāo)為,則可得,,(用表示),同時這個方程中判別式(直線與橢圓相交),可得出的取值范圍.由此可由公式是直線的斜率得出弦長,中點(diǎn)橫坐標(biāo)為,進(jìn)而可寫出的中垂線方程,與相交的交點(diǎn)的坐標(biāo)可得,于是有,這是關(guān)于的一個函數(shù),利用函數(shù)的知識或不等式的性質(zhì)可求得最大值.
試題解析:(1)由已知橢圓的焦點(diǎn)在軸上,,,
,,     2分
橢圓的方程為     4分
(2),消去
直線與橢圓有兩個交點(diǎn),,可得(*)     6分
設(shè),
,弦長,     8分
中點(diǎn), 設(shè),,
  ,      11分

,時,,   14分
(或:
.
當(dāng)且僅當(dāng)時成立,.(用其它解法相應(yīng)給分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:(a>b>0),過點(diǎn)(0,1),且離心率為
(1)求橢圓C的方程;
(2)A,B為橢圓C的左右頂點(diǎn),直線lx=2x軸交于點(diǎn)D,點(diǎn)P是橢圓C上異于A,B的動點(diǎn),直線AP,BP分別交直線l于E,F(xiàn)兩點(diǎn).證明:當(dāng)點(diǎn)P在橢圓C上運(yùn)動時,恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,右焦點(diǎn)到直線的距離為
(1)求橢圓的方程;
(2)過橢圓右焦點(diǎn)F2斜率為)的直線與橢圓相交于兩點(diǎn),為橢圓的右頂點(diǎn),直線分別交直線于點(diǎn),線段的中點(diǎn)為,記直線的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的焦點(diǎn)為,點(diǎn)為該拋物線上的動點(diǎn),又點(diǎn),
的取值范圍是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓,直線的方程為,過右焦點(diǎn)的直線與橢圓交于異于左頂點(diǎn)兩點(diǎn),直線,交直線分別于點(diǎn),
(1)當(dāng)時,求此時直線的方程;
(2)試問,兩點(diǎn)的縱坐標(biāo)之積是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線y=ex在點(diǎn)A(0,1)處的切線斜率為( 。
A.1B.2C.eD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),對稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,有一個頂點(diǎn)為,
(1)求橢圓的方程;
(2)過點(diǎn)作直線與橢圓交于兩點(diǎn),線段的中點(diǎn)為,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線與直線相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)是(1,2)。如果拋物線的焦點(diǎn)為F,那么等于(    )
A. 5         B.6            C.     D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的離心率e=,一條準(zhǔn)線方程為x=
(1)求橢圓C的方程;
(2)設(shè)G、H為橢圓C上的兩個動點(diǎn),O為坐標(biāo)原點(diǎn),且OG⊥OH.
①當(dāng)直線OG的傾斜角為60°時,求△GOH的面積;
②是否存在以原點(diǎn)O為圓心的定圓,使得該定圓始終與直線GH相切?若存在,請求出該定圓方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案