【題目】已知橢圓:(),過原點(diǎn)的兩條直線和分別與交于點(diǎn)、和、,得到平行四邊形.
(1)當(dāng)為正方形時(shí),求該正方形的面積.
(2)若直線和關(guān)于軸對(duì)稱,上任意一點(diǎn)到和的距離分別為和,當(dāng)為定值時(shí),求此時(shí)直線和的斜率及該定值.
(3)當(dāng)為菱形,且圓內(nèi)切于菱形時(shí),求,滿足的關(guān)系式.
【答案】(1);(2)和,;(3).
【解析】
(1)直線和的方程為和利用,可得,根據(jù)對(duì)稱性,可得正方形的面積;
(2) 利用距離公式,結(jié)合為定值,即可證明結(jié)論;(3)設(shè)出切線的方程與橢圓方程聯(lián)立,分類討論,即可求滿足的關(guān)系式.
(1)因?yàn)?/span>為正方形,所以直線和的方程為和.
點(diǎn)、的坐標(biāo)、為方程組的實(shí)數(shù)解,
將代入橢圓方程,解得.
根據(jù)對(duì)稱性,可得正方形的面積.
(2)由題設(shè),不妨設(shè)直線的方程為(),于是直線的方程為.
設(shè),于是有,又,,
,將代入上式,
得,
對(duì)于任意,上式為定值,必有,即,
因此,直線和的斜率分別為和,
此時(shí).
(3)設(shè)與圓相切的切點(diǎn)坐標(biāo)為,于是切線的方程為.
點(diǎn)、的坐標(biāo)、為方程組的實(shí)數(shù)解.
① 當(dāng)或時(shí),均為正方形,橢圓均過點(diǎn),于是有.
② 當(dāng)且時(shí),將代入,
整理得,
于是,
同理可得.
因?yàn)?/span>為菱形,所以,
得,即,
于是,
整理得,由,
得,即.
綜上,,滿足的關(guān)系式為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),若存在正常數(shù),使得對(duì)任意的,都有成立,我們稱函數(shù)為“同比不減函數(shù)”.
(1)求證:對(duì)任意正常數(shù),都不是“同比不減函數(shù)”;
(2)若函數(shù)是“同比不減函數(shù)”,求的取值范圍;
(3)是否存在正常數(shù),使得函數(shù)為“同比不減函數(shù)”,若存在,求的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上兩個(gè)不同的點(diǎn)、關(guān)于直線對(duì)稱.
(1)若已知,為橢圓上動(dòng)點(diǎn),證明:;
(2)求實(shí)數(shù)的取值范圍;
(3)求面積的最大值(為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市為改善空氣環(huán)境質(zhì)量,控制大氣污染,政府相應(yīng)出臺(tái)了多項(xiàng)改善環(huán)境的措施.其中一項(xiàng)是為了減少燃油汽車對(duì)大氣環(huán)境污染.從2018年起大力推廣使用新能源汽車,鼓勵(lì)市民如果需要購(gòu)車,可優(yōu)先考慮選用新能源汽車.政府對(duì)購(gòu)買使用新能源汽車進(jìn)行購(gòu)物補(bǔ)貼,同時(shí)為了地方經(jīng)濟(jì)發(fā)展,對(duì)購(gòu)買本市企業(yè)生產(chǎn)的新能源汽車比購(gòu)買外地企業(yè)生產(chǎn)的新能源汽車補(bǔ)貼高.所以市民對(duì)購(gòu)買使用本市企業(yè)生產(chǎn)的新能源汽車的滿意度也相應(yīng)有所提高.有關(guān)部門隨機(jī)抽取本市本年度內(nèi)購(gòu)買新能源汽車的戶,其中有戶購(gòu)買使用本市企業(yè)生產(chǎn)的新能源汽車,對(duì)購(gòu)買使用新能源汽車的滿意度進(jìn)行調(diào)研,滿意度以打分的形式進(jìn)行.滿分分,將分?jǐn)?shù)按照分成5組,得如下頻率分布直方圖.
(1)若本次隨機(jī)抽取的樣本數(shù)據(jù)中購(gòu)買使用本市企業(yè)生產(chǎn)的新能源汽車的用戶中有戶滿意度得分不少于分,把得分不少于分為滿意.根據(jù)提供的條件數(shù)據(jù),完成下面的列聯(lián)表.
滿意 | 不滿意 | 總計(jì) | |
購(gòu)本市企業(yè)生產(chǎn)的新能源汽車戶數(shù) | |||
購(gòu)?fù)獾仄髽I(yè)生產(chǎn)的新能源汽車戶數(shù) | |||
總計(jì) |
并判斷是否有的把握認(rèn)為購(gòu)買使用新能源汽車的滿意度與產(chǎn)地有關(guān)?
(2)以頻率作為概率,政府對(duì)購(gòu)買使用新能源汽車的補(bǔ)貼標(biāo)準(zhǔn)是:購(gòu)買本市企業(yè)生產(chǎn)的每臺(tái)補(bǔ)貼萬(wàn)元,購(gòu)買外地企業(yè)生產(chǎn)的每臺(tái)補(bǔ)貼萬(wàn)元.但本市本年度所有購(gòu)買新能源汽車的補(bǔ)貼每臺(tái)的期望值不超過萬(wàn)元.則購(gòu)買外地產(chǎn)的新能源汽車每臺(tái)最多補(bǔ)貼多少萬(wàn)元?
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:在四棱錐中, 平面,底面是正方形, .
(1)求異面直線與所成角的大小(結(jié)果用反三角函數(shù)值表示);
(2)求點(diǎn)、分別是棱和的中點(diǎn),求證: 平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和Sn滿足S1>1,且(nN*).
(1)求{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足,Tn為數(shù)列{bn}的前n項(xiàng)和,求Tn;
(3)設(shè)*(為正整數(shù)),問是否存在正整數(shù),使得當(dāng)任意正整數(shù)n>N時(shí)恒有Cn>2015成立?若存在,請(qǐng)求出正整數(shù)的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當(dāng)a=-3時(shí),求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),給出以下四個(gè)命題:(1)當(dāng)時(shí),單調(diào)遞減且沒有最值;(2)方程一定有實(shí)數(shù)解;(3)如果方程(為常數(shù))有解,則解得個(gè)數(shù)一定是偶數(shù);(4)是偶函數(shù)且有最小值.其中假命題的序號(hào)是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓,定義橢圓C的“相關(guān)圓”E為:.若拋物線的焦點(diǎn)與橢圓C的右焦點(diǎn)重合,且橢圓C的短軸長(zhǎng)與焦距相等.
(1)求橢圓C及其“相關(guān)圓”E的方程;
(2)過“相關(guān)圓”E上任意一點(diǎn)P作其切線l,若l 與橢圓交于A,B兩點(diǎn),求證:為定值(為坐標(biāo)原點(diǎn));
(3)在(2)的條件下,求面積的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com