(5分)(2011•廣東)設(shè)f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f°g)(x)和((f•g)(x)對任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),則下列等式恒成立的是(       )

A.((f°g)•h)(x)=((f•h)°(g•h))(x)
B.((f•g)°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.((f•g)•h)(x)=((f•h)•(g•h))(x)

B

解析試題分析:根據(jù)定義兩個函數(shù)(f°g)(x)和((f•g)(x)對任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),然后逐個驗證即可找到答案.
解:A、∵(f°g)(x)=f(g(x)),(f•g)(x)=f(x)g(x),
∴((f°g)•h)(x)=(f°g)(x)h(x)=f(g(x))h(x);
而((f•h)°(g•h))(x)=(f•h)((g•h)(x))=f(g(x)h(x))h(g(x)h(x));
∴((f°g)•h)(x)≠((f•h)°(g•h))(x)
B、∵((f•g)°h)(x)=(f•g)(h(x))=f(h(x))g(h(x))
((f°h)•(g°h))(x)=(f°h)•(x)(g°h)(x)=f(h(x))g(h(x))
∴((f•g)°h)(x)=((f°h)•(g°h))(x)
C、((f°g)°h)(x)=((f°g)(h(x))=f(h(g(x))),
((f°h)°(g°h))(x)=f(h(g(h(x))))
∴((f°g)°h)(x)≠((f°h)°(g°h))(x);
D、((f•g)•h)(x)=f(x)g(x)h(x),
((f•h)•(g•h))(x)=f(x)h(x)g(x)h(x),
∴((f•g)•h)(x)≠((f•h)•(g•h))(x).
故選B.
點評:此題是個基礎(chǔ)題.考查學(xué)生分析解決問題的能力,和知識方法的遷移能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

的最小值是

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知,則的(   )

A.充分而不必要條件 B.必要而不充分條件
C.充要條件 D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知函數(shù).那么不等式的解集為( 。.

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知,,,則(    )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

函數(shù)f(x)=ax2+ax-1在R上恒滿足f(x)<0,則a的取值范圍是(  )

A.a(chǎn)≤0B.a(chǎn)<-4
C.-4<a<0D.-4<a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

[2014·汕頭模擬]函數(shù)y=的圖象大致為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

(2014·嘉興模擬)已知a=,b=0.3-2,c=lo2,則a,b,c的大小關(guān)系是(  )

A.a(chǎn)>b>cB.a(chǎn)>c>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若x0是方程的解,則x0屬于區(qū)間( 。

A.(,1)B.(
C.(,D.(0,

查看答案和解析>>

同步練習(xí)冊答案