(本題滿分14分)若定義在上的函數(shù)同時(shí)滿足下列三個(gè)條件:
①對任意實(shí)數(shù)均有成立;
②;
③當(dāng)時(shí),都有成立。
(1)求,的值;
(2)求證:為上的增函數(shù)
(3)求解關(guān)于的不等式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某化工廠生產(chǎn)的某種化工產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸之間時(shí),其生產(chǎn)的總成本(萬元)與年產(chǎn)量(噸)之間的函數(shù)關(guān)系式近似地表示為.問:(1)每噸平均出廠價(jià)為16萬元,年產(chǎn)量為多少噸時(shí),可獲得最大利潤?并求出最大利潤;
(2)年產(chǎn)量為多少噸時(shí),每噸的平均成本最低?并求出最低成本。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)和點(diǎn),過點(diǎn)作曲線的兩條切線、,切點(diǎn)分別為、.
(1)求證:為關(guān)于的方程的兩根;
(2)設(shè),求函數(shù)的表達(dá)式;
(3)在(2)的條件下,若在區(qū)間內(nèi)總存在個(gè)實(shí)數(shù)(可以相同),使得不等式成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)()
(1)求的定義域;
(2)問是否存在實(shí)數(shù)、,當(dāng)時(shí),的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fc/e/rgw3.gif" style="vertical-align:middle;" />,且 若存在,求出、的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知某商品的價(jià)格上漲x%,銷售的數(shù)量就減少mx%,其中m為正的常數(shù)。
(1)當(dāng)m=時(shí),該商品的價(jià)格上漲多少,就能使銷售的總金額最大?
(2)如果適當(dāng)?shù)貪q價(jià),能使銷售總金額增加,求m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(理科)已知函數(shù)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若y=f(x)在[-1,1]上存在零點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=0時(shí),若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)若函數(shù)y=f(x)(x∈[t,4])的值域?yàn)閰^(qū)間D,是否存在常數(shù)t,使區(qū)間D的長度為7-2t?若存在,求出t的值;若不存在,請說明理由(注:區(qū)間[p,q]的長度為q-p).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品, 根據(jù)市場調(diào)查與預(yù)測, 甲產(chǎn)品
的利潤與投資成正比, 其關(guān)系如圖1, 乙產(chǎn)品的利潤與投資的算術(shù)平方根成正比, 其關(guān)系如
圖2 (注: 利潤與投資的單位: 萬元).
(Ⅰ) 分別將甲、乙兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(Ⅱ) 該企業(yè)籌集了100萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品, 問: 怎樣分配這100萬元資金, 才能使企業(yè)獲得最大利潤, 其最大利潤為多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com