當y=2cosx-3sinx取得最大值時,tanx的值是( )
A.
B.-
C.
D.4
【答案】分析:用輔助角法將原函數(shù)轉化為y=sin(φ-x)(其中tanφ=).再應用整體思想求解.
解答:解析:y=sin(φ-x)(其中tanφ=).
y有最大值時,應sin(φ-x)=1⇒φ-x=2kπ+⇒-x=2kπ+-φ.
∴tanx=-tan(-x)=-tan(2kπ+-φ)=-cotφ=-=-
故選B
點評:本題主要考查在三角函數(shù)中用輔助角法將一般的函數(shù)轉化為一個角的一種三角函數(shù),用整體思想來應用三角函數(shù)的性質(zhì)解題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=2cosx(
3
cosx-sinx)-
3
-2
的圖象F按向量
a
平移到F′,F(xiàn)′的函數(shù)解析式為y=f(x),當y=f(x),為奇函數(shù)時,向量
a
可以等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=acos2x+2cosx-3
(Ⅰ) 當a=1時,求函數(shù)y=f(x)的值域;
(Ⅱ)若函數(shù)y=f(x)存在零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)=acos2x+2cosx-3
(Ⅰ) 當a=1時,求函數(shù)y=f(x)的值域;
(Ⅱ)若函數(shù)y=f(x)存在零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知f(x)=acos2x+2cosx-3
(Ⅰ) 當a=1時,求函數(shù)y=f(x)的值域;
(Ⅱ)若函數(shù)y=f(x)存在零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年浙江省寧波市八校聯(lián)考高一(上)期末數(shù)學試卷(解析版) 題型:解答題

已知f(x)=acos2x+2cosx-3
(Ⅰ) 當a=1時,求函數(shù)y=f(x)的值域;
(Ⅱ)若函數(shù)y=f(x)存在零點,求a的取值范圍.

查看答案和解析>>

同步練習冊答案