已知向量 
(Ⅰ)若,求向量的概率;
(Ⅱ)若用計算機產(chǎn)生的隨機二元數(shù)組構(gòu)成區(qū)域,求二元數(shù)組滿足1的概率.
(Ⅰ);(Ⅱ)

試題分析:(Ⅰ)從取兩個數(shù)的基本事件有
,共9種      2分
設“向量”為事件
若向量,則      3分
∴事件包含的基本事件有,共2種      5分
∴所求事件的概率為       6分
(Ⅱ)二元數(shù)組構(gòu)成區(qū)域
設“二元數(shù)組滿足1”為事件
則事件    9分
∴所求事件的概率為       12分
點評:典型題,本題難度不大,較為典型,古典概型概率的計算,關鍵是計算事件數(shù),可采用“樹圖法”“坐標法”,以保證不重不漏。幾何概型概率的計算,關鍵是計算“幾何度量”,往往與面積,體積,線段長度等有關。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在進行一項擲骰子放球的游戲中規(guī)定:若擲出1點或2點,則在甲盒中放一球;否則,在乙盒中放一球,F(xiàn)在前后一共擲了4次骰子,設分別表示甲、乙盒子中球的個數(shù)。
(Ⅰ)求的概率;
(Ⅱ)若求隨機變量的分布列和數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在進行一項擲骰子放球游戲中,規(guī)定:若擲出1點,甲盒中放一球;
若擲出2點或3點,乙盒中放一球;若擲出4點或5點或6點,丙盒中放一球,前后共擲3
次,設分別表示甲,乙,丙3個盒中的球數(shù).
(1)求依次成公差大于0的等差數(shù)列的概率;
(2)記,求隨機變量的概率分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為豐富高三學生的課余生活,提升班級的凝聚力,某校高三年級6個班(含甲、乙)舉行唱歌比賽.比賽通過隨機抽簽方式?jīng)Q定出場順序.
求:(1)甲、乙兩班恰好在前兩位出場的概率;
(2)比賽中甲、乙兩班之間的班級數(shù)記為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

哈爾濱市五一期間決定在省婦女兒中心舉行中學生“藍天綠樹、愛護環(huán)境”圍棋比賽,規(guī)定如下:
兩名選手比賽時每局勝者得1分,負者得0分,比賽進行到有一人比對方多3分或打滿7局時停止.
設某學校選手甲和選手乙比賽時,甲在每局中獲勝的概率為,且各局勝負相互獨立.已知
第三局比賽結(jié)束時比賽停止的概率為
(1)求的值;
(2)求甲贏得比賽的概率;
(3)設表示比賽停止時已比賽的局數(shù),求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

市民李生居住在甲地,工作在乙地,他的小孩就讀的小學在丙地,三地之間的道路情
況如圖所示.假設工作日不走其它道路,只在圖示的道路中往返,每次在路口選擇道路是隨機
的.同一條道路去程與回程是否堵車相互獨立. 假設李生早上需要先開車送小孩去丙地小學,
再返回經(jīng)甲地趕去乙地上班.假設道路、上下班時間往返出現(xiàn)擁堵的概率都是,
道路、上下班時間往返出現(xiàn)擁堵的概率都是,只要遇到擁堵上學和上班的都會遲到.

(1)求李生小孩按時到校的概率;
(2)李生是否有八成把握能夠按時上班?
(3)設表示李生下班時從單位乙到達小學丙遇到擁堵的次數(shù),求的均值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

盒子里有形狀大小完全相同的3個紅球和2個白球,如果不放回的依次取兩個球,則在第一次取到白球的條件下,第二次取到紅球的概率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在某校組織的一次籃球定點投籃測試中,規(guī)定每人最多投次,每次投籃的結(jié)果相互獨立.在處每投進一球得分,在處每投進一球得分,否則得分. 將學生得分逐次累加并用表示,如果的值不低于分就認為通過測試,立即停止投籃,否則繼續(xù)投籃,直到投完三次為止.投籃的方案有以下兩種:方案1:先在處投一球,以后都在處投;方案2:都在處投籃.甲同學在處投籃的命中率為,在處投籃的命中率為.
(Ⅰ)甲同學選擇方案1.
求甲同學測試結(jié)束后所得總分等于4的概率;
求甲同學測試結(jié)束后所得總分的分布列和數(shù)學期望;
(Ⅱ)你認為甲同學選擇哪種方案通過測試的可能性更大?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知每個人的血清中含有乙型肝炎病毒的概率為3‰,混合100人的血清,則混合血清中有乙型肝炎病毒的概率約為(精確到小數(shù)點后四位)  ________

查看答案和解析>>

同步練習冊答案