已知向量
a
=(cosωx,sinωx),
b
=(cosωx,
3
cosωx),其中(0<ω<2).函數(shù),f(x)=
a
b
-
1
2
其圖象的一條對(duì)稱軸為x=
π
6

(I)求函數(shù)f(x)的表達(dá)式及單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,S為其面積,若f(
A
2
)
=1,b=1,S△ABC=
3
,求a的值.
分析:(I)利用效率低數(shù)量積公式求出f(x);利用三角函數(shù)的二倍角公式化簡f(x);利用對(duì)稱軸對(duì)應(yīng)的函數(shù)值是最值;列出方程求出ω,求出f(x);令整體角在[2kπ-
π
2
,2kπ+
π
2
]上,求出x的范圍即函數(shù)的遞增區(qū)間.
(II)先求出角A,利用三角形的面積公式列出方程求出c;利用三角形的余弦定理求出a.
解答:解:(I))f(x)=
a
b
-
1
2
=cos2ωx+
3
sinωxcosωx-
1
2

=
1+cos2ωx
2
+
3
2
sin2ωx-
1
2

=sin(2ωx+
π
6
)

當(dāng)x=
π
6
時(shí),sin(
ωπ
3
+
π
6
)=±1
ωπ
3
+
π
6
=kπ+
π
2

∵0<ω<2∴ω=1
f(x)=sin(2x+
π
6
)

-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ
解得kπ-
π
3
≤x≤kπ+
π
6

所以f(x)d的遞增區(qū)間為[kπ-
π
3
,kπ+
π
6
](k∈Z)

(II)f(
A
2
)=sin(A+
π
6
)=1

在△ABC中,0<A<π,
π
6
<A+
π
6
6

∴A+
π
6
=
π
2

∴A=
π
3

由S△ABC=
1
2
bcsinA=
3
,b=1得c=4
由余弦定理得a2=42+12-2×4×1cos60°=13
故a=
13
點(diǎn)評(píng):本題考查向量的數(shù)量積公式、考查三角函數(shù)的二倍角公式、求三角函數(shù)的單調(diào)區(qū)間采用整體角處理的方法、考查三角形的面積公式、三角形的正弦,余弦定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosα,1),
b
=(-2,sinα),α∈(π,
2
)
,且
a
b

(1)求sinα的值;
(2)求tan(α+
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cos(-θ),sin(-θ)),
b
=(cos(
π
2
-θ),sin(
π
2
-θ))

(1)求證:
a
b

(2)若存在不等于0的實(shí)數(shù)k和t,使
x
=
a
+(t2+3)
b
y
=(-k
a
+t
b
),滿足
x
y
,試求此時(shí)
k+t2
t
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosθ,sinθ),θ∈[0,π],向量
b
=(
3
,1),b=(
3
,1)
,
a
b
,則θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosα,sinα),
b
=(sinβ,-cosβ),則|
a
+
b
|最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosθ,sinθ),向量
b
=(2
2
,-1),則|3
a
-
b
|的最大值是
 

查看答案和解析>>

同步練習(xí)冊答案