判斷下列函數(shù)的奇偶性.
(1)f(x)=|sinx|;
(2)f(x)=sinxcosx.
考點:函數(shù)奇偶性的判斷
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:先求定義域,判斷是否關(guān)于原點對稱,再計算f(-x),與f(x)比較,注意運用誘導(dǎo)公式,即可判斷.
解答: 解:(1)定義域為R,f(-x)=|sin(-x)|=|sinx|=f(x),
則該函數(shù)為偶函數(shù);
(2)定義域為R,f(-x)=sin(-x)cos(-x)
=-sinxcosx=-f(x).
則函數(shù)為奇函數(shù).
點評:本題考查函數(shù)的奇偶性的判斷,注意運用定義和誘導(dǎo)公式,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于直線上的任意點P(x,y),若點Q(4x+2y,x+3y)仍在此直線上,求此直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos(ωx+
π
3
)在區(qū)間[0,2π]上恰有一個最大值1和一個最小值-1,ω的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個三角形用斜二測畫法所作的直觀圖是一個邊長為1正三角形,則原三角形的面積為( 。
A、
6
4
B、
3
4
C、
3
2
D、
6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={(x,y)|x(x-1)+y(y-1)≤r},集合B={(x,y)|x2+y2≤r2},若A⊆B,則r的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|x-a|+bx,當(dāng)a=2時,f(x)在R上單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一系列函數(shù)有如下性質(zhì):
函數(shù)y=x+
1
x
在(0,1]上是減函數(shù),在[1,+∞)上是增函數(shù);
函數(shù)y=x+
2
x
在(0,
2
]上是減函數(shù),在[
2
,+∞)上是增函數(shù); 
函數(shù)y=x+
3
x
在(0,
3
]上是減函數(shù),在[
3
,+∞)上是增函數(shù);

利用上述所提供的信息解決問題:
若函數(shù)y=x+
3m
x
(x>0))的值域是[6,+∞),則實數(shù)m的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:sin4
π
4
-cos2
π
2
+6tan3
π
4
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是橢圓
x2
4
+y2=1上第一象限內(nèi)的點,A(2,0),B(0,1),O為原點,則四邊形OAPB面積的最大值為( 。
A、2
B、
2
+2
C、
2
D、1

查看答案和解析>>

同步練習(xí)冊答案