函數(shù)y=x+
4
x-1
(x>1)
的最小值是( 。
分析:求兩個數(shù)和的最小值,湊出兩個數(shù)的積為定值,滿足基本不等式成立的條件
解答:解:y=x+
4
x-1
=x-1+
4
x-1
+1≥2
(x-1)•
4
x-1
+1=5
當(dāng)且僅當(dāng)x-1=
4
x-1
即當(dāng)x=3時取“=”
所以y=x+
4
x-1
(x>1)
的最小值為5
故選B.
點(diǎn)評:本題主要考查了基本不等式在函數(shù)最值求解中的應(yīng)用,利用基本不等式求最值,一定要注意需要的條件:一正、二定、三相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x>1,則函數(shù)y=x+
4x-1
的最小值
5
5
,此時相應(yīng)x的值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x+
4x-1
(x>1)
的值域?yàn)?!--BA-->
[5,+∞)
[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x+
4x-1
( x>1)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)y=x+
4
x-1
(x>1)
的值域?yàn)開_____.

查看答案和解析>>

同步練習(xí)冊答案