如圖所示,等腰△ABC的底邊AB=6,高CD=3,點(diǎn)E是線段BD上異于點(diǎn)B、D的動(dòng)點(diǎn).點(diǎn)F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.記,用表示四棱錐P-ACFE的體積.

(Ⅰ)求 的表達(dá)式;
(Ⅱ)當(dāng)x為何值時(shí),取得最大值?
(Ⅲ)當(dāng)V(x)取得最大值時(shí),求異面直線AC與PF所成角的余弦值
(Ⅰ)(Ⅱ)時(shí)取得最大值(Ⅲ)

試題分析:(Ⅰ)根據(jù)四棱錐的體積公式可知,
;
(Ⅱ),
時(shí), 時(shí), 
時(shí)取得最大值.
(Ⅲ)以E為空間坐標(biāo)原點(diǎn),直線EF為軸,直線EB為軸,直線EP為軸建立空間直角坐標(biāo)系,則;
,
設(shè)異面直線AC與PF夾角是,
.
點(diǎn)評(píng):本小題融合了四棱錐的體積計(jì)算,函數(shù)的最值,異面直線所成的角等問(wèn)題,比較綜合,但是難度不大,求解時(shí)要注意取值范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示在四棱錐P—ABCD中,平面PAB⊥平面ABCD,底面ABCD是邊長(zhǎng)為2的正方形,△PAB為等邊三角形。(12分)

(1)求PC和平面ABCD所成角的大;
(2)求二面角B─AC─P的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)m,n是異面直線,則(1)一定存在平面α,使mα,且n∥α;(2)一定存在平面α,使mα,且n⊥α;(3)一定存在平面γ,使得m,n到平面γ距離相等;(4)一定存在無(wú)數(shù)對(duì)平面α和β,使mα,nβ且α⊥β。上述4個(gè)命題中正確命題的序號(hào)是(   )
A.(1)(2)(3)B.(1)(2)(4)C.(1)(3)(4)D.(1)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,EPC的中點(diǎn),作PB于點(diǎn)F

(I) 證明: PA∥平面EDB;
(II) 證明:PB⊥平面EFD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知表示兩個(gè)互相垂直的平面,表示一對(duì)異面直線,則的一個(gè)充分條件是(  )
A.     B.
C.      D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)如圖,在長(zhǎng)方體中,已知上下兩底面為正方形,且邊長(zhǎng)均為1;側(cè)棱,為中點(diǎn),中點(diǎn),上一個(gè)動(dòng)點(diǎn).

(Ⅰ)確定點(diǎn)的位置,使得;
(Ⅱ)當(dāng)時(shí),求二面角的平
面角余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知兩個(gè)不同的平面和兩條不重合的直線,有下列四個(gè)命題:
①若//,,則;         ②若,,則//;
③若,,則;       ④若//,//,則//.
其中正確命題的個(gè)數(shù)是
A.1個(gè)B.2個(gè)
C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)是兩個(gè)不同的平面,是兩條不同直線.①若,則
②若,則
③若,則
④若,則以上命題正確的是            .(將正確命題的序號(hào)全部填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題12分)如圖,平面,點(diǎn)上,,四邊形為直角梯形,,,

(1)求證:平面;
(2)求二面角的余弦值;
(3)直線上是否存在點(diǎn),使∥平面,若存在,求出點(diǎn);若不存在,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案