【題目】已知橢圓的左、右焦點為,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段的垂直平分線與的交點的軌跡為曲線,若,且是曲線上不同的點,滿足,則的取值范圍為( )
A. B. C. D.
【答案】A
【解析】
由已知條件推導(dǎo)出曲線C2:y2=4x.,,由
AB⊥BC,推導(dǎo)出,由此能求出的取值范圍.
∵橢圓C1:+=1的左右焦點為F1,F(xiàn)2,
∴F1(﹣1,0),F(xiàn)2(1,0),直線l1:x=﹣1,
設(shè)l2:y=t,設(shè)P(﹣1,t),(t∈R),M(x,y),
則y=t,且由|MP|=|MF2|,
∴(x+1)2=(x﹣1)2+y2,
∴曲線C2:y2=4x.
∵A(1,2),B(x1,y1),C(x2,y2)是C2上不同的點,
∴,,
∵AB⊥BC,
∴=(x1﹣1)(x2﹣x1)+(y1﹣2)(y2﹣y1)=0,
∵,,
∴(﹣4)(﹣)+=0,
∵y1≠2,y1≠y2,
∴,
整理,得,
關(guān)于y1的方程有不為2的解,
∴,且y2≠﹣6,
∴0,且y2≠﹣6,
解得y2<﹣6,或y2≥10.
故選:A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:y2=2px(p>0)的焦點為F,拋物線上存在一點G到焦點的距離為3,且點G在圓C:x2+y2=9上. (Ⅰ)求拋物線C1的方程;
(Ⅱ)已知橢圓C2: =1(m>n>0)的一個焦點與拋物線C1的焦點重合,且離心率為 .直線l:y=kx﹣4交橢圓C2于A、B兩個不同的點,若原點O在以線段AB為直徑的圓的外部,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b為正實數(shù),函數(shù)f(x)=ax3+bx+2x在[0,1]上的最大值為4,則f(x)在[﹣1,0]上的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)根據(jù)2002﹣2014年期間學(xué)生的興趣愛好,分別創(chuàng)建了“攝影”、“棋類”、“國學(xué)”三個社團,據(jù)資料統(tǒng)計新生通過考核遠拔進入這三個社團成功與否相互獨立,2015年某新生入學(xué),假設(shè)他通過考核選拔進入該校的“攝影”、“棋類”、“國學(xué)”三個社團的概率依次為m, ,n,已知三個社團他都能進入的概率為 ,至少進入一個社團的概率為 ,且m>n.
(1)求m與n的值;
(2)該校根據(jù)三個社團活動安排情況,對進入“攝影”社的同學(xué)增加校本選修字分1分,對進入“棋類”社的同學(xué)增加校本選修學(xué)分2分,對進入“國學(xué)”社的同學(xué)增加校本選修學(xué)分3分.求該新同學(xué)在社團方面獲得校本選修課字分分數(shù)的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x﹣ |+|2x+m|(m≠0).
(1)證明:f(x)≥2 ;
(2)若當(dāng)m=2時,關(guān)于實數(shù)x的不等式f(x)≥t2﹣ t恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足ccosB=(2a+b)cos(π﹣C).
(1)求角C的大;
(2)若c=4,△ABC的面積為 ,求a+b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的頂點與焦點分別是橢圓的焦點與頂點,若雙曲線的兩條漸近線與橢圓的交點構(gòu)成的四邊形恰為正方形,則橢圓的離心率為( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com