某食品企業(yè)一個(gè)月內(nèi)被消費(fèi)者投訴的次數(shù)用ξ表示,椐統(tǒng)計(jì),隨機(jī)變量ξ的概率分布如下:
ξ 0 1 2 3
p 0.1 0.3 2a a
(Ⅰ)求a的值
(Ⅱ)求一個(gè)月內(nèi)被消費(fèi)者投訴不超過2次的概率.
分析:(1)對于隨機(jī)變量的所有可能的取值,其相應(yīng)的概率之和都是1,即P1+P2+…=1.借此,我們可以求出a值,再利用數(shù)學(xué)期望的定義求解.
(2)由題意得,該企業(yè)在一個(gè)月內(nèi)共被消費(fèi)者投訴不超過2次的事件分解成投訴0次,1次,2次三個(gè)互斥事件之和,分別求出這兩個(gè)事件的概率后相加即可.
解答:解:(1)由概率分布的性質(zhì)有0.1+0.3+2a+a=1,解得a=0.2,
∴ξ的概率分布列為
ξ 0 1 2 3
P 0.1 0.3 0.4 0.2
(2)該企業(yè)在一個(gè)月內(nèi)被消費(fèi)者投訴不超過2次的事件分解成投訴0次,1次,2次三個(gè)互斥事件,
根據(jù)互斥事件的概率相加原理,
一個(gè)月內(nèi)被消費(fèi)者投訴不超過2次的概率為0.1+0.3+0.4=0.8.
點(diǎn)評:本題考查了離散性隨機(jī)變量的分布列,考查了互斥事件的概率相加公式,解答的關(guān)鍵是讀懂離散性隨機(jī)變量的分布列.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

10、椐統(tǒng)計(jì),某食品企業(yè)一個(gè)月內(nèi)被消費(fèi)者投訴的次數(shù)為0,1,2的概率分別為0.4,0.5,0.1
(Ⅰ)求該企業(yè)在一個(gè)月內(nèi)共被消費(fèi)者投訴不超過1次的概率;
(Ⅱ)假設(shè)一月份與二月份被消費(fèi)者投訴的次數(shù)互不影響,求該企業(yè)在這兩個(gè)月內(nèi)共被消費(fèi)者投訴2次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

19、某食品企業(yè)一個(gè)月內(nèi)被消費(fèi)者投訴的次數(shù)用ξ表示,椐統(tǒng)計(jì),隨機(jī)變量ξ的概率分布如下:
(Ⅰ)求a的值和ξ的數(shù)學(xué)期望;
(Ⅱ)假設(shè)一月份與二月份被消費(fèi)者投訴的次數(shù)互不影響,求該企業(yè)在這兩個(gè)月內(nèi)共被消費(fèi)者投訴2次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•越秀區(qū)模擬)某食品企業(yè)一個(gè)月內(nèi)被消費(fèi)者投訴的次數(shù)用ξ表示.據(jù)統(tǒng)計(jì),隨機(jī)變量ξ的概率分布如下:
ξ 0 1 2 3
P 0.1 a 2a 0.3
(1)求a的值和ξ的數(shù)學(xué)期望;
(2)假設(shè)一月份與二月份被消費(fèi)者投訴的次數(shù)互不影響,求該企業(yè)在這兩個(gè)月內(nèi)共被消費(fèi)者投訴3次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某食品企業(yè)一個(gè)月內(nèi)被消費(fèi)者投訴1次的概率為0.3,投訴2次的概率為0.4,投訴3次的概率為0.2,0次投訴的概率為0.1.
(1)求該企業(yè)一個(gè)月內(nèi)至少被消費(fèi)者投訴2次的概率.
(2)假設(shè)一月份與二月份被消費(fèi)者投訴的次數(shù)互不影響,求該企業(yè)在這兩個(gè)月內(nèi)共被消費(fèi)者投訴2次的概率.

查看答案和解析>>

同步練習(xí)冊答案