設(shè)
的單調(diào)區(qū)間
設(shè), 兩點(diǎn)連線的斜率為,問(wèn)是否存在常數(shù),且,當(dāng)時(shí)有,當(dāng)時(shí)有;若存在,求出,并證明之,若不存在說(shuō)明理由.

(1)上單調(diào)遞增,上單調(diào)遞減
(2)=為所求.

解析試題分析:解;(1)



,當(dāng)時(shí)
當(dāng)時(shí)
上單調(diào)遞增,
上單調(diào)遞減.           5分
(2)
設(shè)

上單調(diào)遞減

解得
則當(dāng)時(shí),

當(dāng)時(shí),
            8分
現(xiàn)在證明:
考察:
設(shè)
,當(dāng)時(shí),,遞減
所以,當(dāng)時(shí),


            12分
再考察:
設(shè)
,當(dāng)時(shí),,遞增
所以,當(dāng)時(shí),,



,取為所求.       14分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):主要是考查了函數(shù)單調(diào)性,以及函數(shù)最值的運(yùn)用和不等式的證明,屬于難度題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)已知對(duì)定義域內(nèi)的任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),在點(diǎn)處的切線方程為
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)若對(duì)于區(qū)間上任意兩個(gè)自變量的值,都有,求實(shí)數(shù)的最小值;
(Ⅲ)若過(guò)點(diǎn),可作曲線的三條切線,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)為奇函數(shù),其圖象在點(diǎn)處的切線與直線垂直,導(dǎo)函數(shù)的最小值為
(1)求,,的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間,并求函數(shù)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)求上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),(其中).
(1)求的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;
(3)設(shè)函數(shù),當(dāng)時(shí),若存在,對(duì)任意的,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)在x=與x =l時(shí)都取得極值
(1)求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間
(2)若對(duì)x∈(-1,2),不等式f(x)<c2恒成立,求c的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)若曲線處的切線互相平行,求的值及函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若對(duì)任意,均存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).(其中為自然對(duì)數(shù)的底數(shù)).
(1)設(shè)曲線處的切線與直線垂直,求的值;
(2)若對(duì)于任意實(shí)數(shù)≥0,恒成立,試確定實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),是否存在實(shí)數(shù),使曲線C:在點(diǎn)處的切線與軸垂直?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案