【題目】對于函數(shù)的圖象為C,敘述正確是( )
A.圖象C關(guān)于直線對稱
B.函數(shù)在區(qū)間內(nèi)是增函數(shù)
C.由的圖象向右平移個單位長度可以得到圖象C
D.圖象C關(guān)于點對稱
【答案】AB
【解析】
將代入函數(shù)中,若取到了最值,則圖像C關(guān)于直線對稱,否則不對稱;先求出的遞增區(qū)間,然后判斷;利用正弦函數(shù)圖像平移變化規(guī)律判斷;圖像的對稱中心是其圖像與軸的交點,所以將點坐標代入驗證即可.
解:對于A,將代入函數(shù)中得,,所以直線 是圖像C的一條對稱軸,故A正確;
對于B,由≤≤,得≤≤,所以函數(shù)在區(qū)間內(nèi)是增函數(shù)是正確的;
對于C,由于,所以的圖像是由的圖像向右平移個單位長度可以得到,故C不正確;
對于D,當時,,所以圖像C不關(guān)于點對稱,故D不正確;
故選:AB
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖像相鄰對稱軸之間的距離是,若將的圖像向右移個單位,所得函數(shù)為奇函數(shù).
(1)求的解析式;
(2)若函數(shù)的零點為,求;
(3)若對任意,有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的矩形中, ,點為邊上異于, 兩點的動點,且, 為線段的中點,現(xiàn)沿將四邊形折起,使得與的夾角為,連接, .
(1)探究:在線段上是否存在一點,使得平面,若存在,說明點的位置,若不存在,請說明理由;
(2)求三棱錐的體積的最大值,并計算此時的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某教育主管部門到一所中學檢查高三年級學生的體質(zhì)健康情況,從中抽取了名學生的體質(zhì)測試成績,得到的頻率分布直方圖如圖1所示,樣本中前三組學生的原始成績按性別分類所得的莖葉圖如圖2所示.
(Ⅰ)求, , 的值;
(Ⅱ)估計該校高三學生體質(zhì)測試成績的平均數(shù)和中位數(shù);
(Ⅲ)若從成績在的學生中隨機抽取兩人重新進行測試,求至少有一名男生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點, 軸為極軸建立極坐標系,曲線的極坐標為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)若曲線和曲線有三個公共點,求以這三個公共點為頂點的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則,將某些整數(shù)染成紅色,先染1;再染3個偶數(shù)2,4,6;再染6后面最鄰近的5個連續(xù)奇數(shù)7,9,11,13,15;再染15后面最鄰近的7個連續(xù)偶數(shù)16,18,20,22,24,26,28;再染此后最鄰近的9個連續(xù)奇數(shù)29,31,…,45;按此規(guī)則一直染下去,得到一紅色子數(shù)列:1,2,4,6,7,9,11,13,15,16,……,則在這個紅色子數(shù)列中,由1開始的第2019個數(shù)是( )
A. 3972 B. 3974 C. 3991 D. 3993
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,橢圓的中心在原點,點在橢圓上,且離心率為.
(1)求橢圓的標準方程;
(2)動直線交橢圓于, 兩點, 是橢圓上一點,直線的斜率為,且, 是線段上一點,圓的半徑為,且,求
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列敘述中正確的是( )
A.若一個平面內(nèi)的兩條直線與另一個平面都平行,那么這兩個平面相互平行;
B.若三個平面兩兩相交,其中兩個平面的交線與第三個平面平行.則另外兩條交線平行;
C.如果是兩條異面直線,那么直線一定是異面直線;
D.在中,,,,則繞所在直線旋轉(zhuǎn)一周,所形成的幾何體的軸截面面積為10.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com