【題目】已知整數(shù)n≥4,集合M={1,2,3,…,n}的所有含有4個元素的子集記為A1 , A2 , A3 , …,
設A1 , A2 , A3 , …, 中所有元素之和為Sn
(1)求S4 , S5 , S6并求出Sn;
(2)證明:S4+S5+…+Sn=10Cn+26

【答案】
(1)解:當n=4時,集合M只有1個符合條件的子集,S4=1+2+3+4=10,

當n=5時,集合M每個元素出現(xiàn)了 次,S5= =40,

當n=6時,集合M每個元素出現(xiàn)了 次,S6= =140,

所以,當集合M有n個元素時,每個元素出現(xiàn)了 ,故Sn=


(2)證明:由(1)可得Sn=

∵Sn= = ,

則S4+S5+…+Sn=10( )=

得證


【解析】(1)根據(jù)新定義,直接計算n=4,5,6集合M的子集.歸納法得出Sn . (2)利用組合的公式展開各項計算即可得證.
【考點精析】根據(jù)題目的已知條件,利用子集與真子集和組合與組合數(shù)的公式的相關知識可以得到問題的答案,需要掌握任何一個集合是它本身的子集;n個元素的子集有2n個,n個元素的真子集有2n -1個,n個元素的非空真子集有2n-2個;從n個不同的元素中任取m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)
(1)用含a的式子表示b;
(2)令F(x)= ,其圖象上任意一點P(x0 , y0)處切線的斜率 恒成立,求實數(shù)a的取值范圍;
(3)若a=2,試求f(x)在區(qū)間 上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知滿足為常數(shù)),若最大值為3,則=( )

A. 2 B. 1 C. 4 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若f(x)=x﹣1﹣alnx,g(x)= ,a<0,且對任意x1 , x2∈[3,4](x1≠x2),|f(x1)﹣f(x2)|<| |的恒成立,則實數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出如下四個命題: ①若“p且q”為假命題,則p、q均為假命題;

②命題“若,則 ”的否命題為“若,則”;

③命題“ ”的否定是“”;

④“ ”是“ ”的充分必要條件. 其中正確的命題個數(shù)是( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C1x2=y,圓C2x2+y﹣42=1的圓心為點M

1)求點M到拋物線C1的準線的距離;

2)已知點P是拋物線C1上一點(異于原點),過點P作圓C2的兩條切線,交拋物線C1AB兩點,若過MP兩點的直線l垂直于AB,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,| |=4, =12,E為AC的中點.

(1)若cos∠ABC= ,求△ABC的面積SABC
(2)若 =2 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工藝品廠要生產(chǎn)如圖所示的一種工藝品,該工藝品由一個實心圓柱體和一個實心半球體組成,要求半球的半徑和圓柱的底面半徑之比為,工藝品的體積為,F(xiàn)設圓柱的底面半徑為,工藝品的表面積為,半球與圓柱的接觸面積忽略不計。

(1)試寫出關于的函數(shù)關系式并求出的取值范圍;

(2)怎樣設計才能使工藝品的表面積最。坎⑶蟪鲎钚≈。

參考公式:球體積公式:;球表面積公式:,其中為球半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx,g(x)= x2﹣bx(b為常數(shù)).
(1)函數(shù)f(x)的圖象在點(1,f(1))處的切線與函數(shù)g(x)的圖象相切,求實數(shù)b的值;
(2)若函數(shù)h(x)=f(x)+g(x)在定義域上存在單調(diào)減區(qū)間,求實數(shù)b的取值范圍;
(3)若b≥2,x1 , x2∈[1,2],且x1≠x2 , 都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習冊答案