【題目】如圖,在四棱錐中,,,是等邊三角形,,.
(1)求證:;
(2)求直線與平面所成的角的正弦值.
【答案】(1)詳見解析;(2).
【解析】
(1)由題意可得是等邊三角形. 取中點(diǎn),連,,可證平面,即證;
(2)法一 作出直線與平面所成的角,在直角三角形中求其正弦值.法二 以為坐標(biāo)原點(diǎn),以、分別為軸、軸建立平面直角坐標(biāo)系,求平面的法向量.設(shè)直線與平面所成角為,則.
(1)由題意,是等邊三角形,,
,是等邊三角形.
取中點(diǎn),連,,
則,,又,
∴平面,∵平面,∴.
(2)法一:在直角梯形中,.
∵平面,平面∴平面平面.
作交為,則平面,、交于,為直線與平面所成的角.
由題意得,又∵,
∴,.
∵,∴,,,
∴為的中點(diǎn),∴,
∴.
法二:∵,以為坐標(biāo)原點(diǎn),與平面垂直的及、分別為軸、軸和軸建立平面直角坐標(biāo)系,
則,∵,∴
又∵,,,∴,
,,.
設(shè)平面的法向量為,,
取.
設(shè)直線與平面所成角為,則.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),以下結(jié)論正確的個(gè)數(shù)為( )
①當(dāng)時(shí),函數(shù)的圖象的對稱中心為;
②當(dāng)時(shí),函數(shù)在上為單調(diào)遞減函數(shù);
③若函數(shù)在上不單調(diào),則;
④當(dāng)時(shí),在上的最大值為15.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是正方形,且,平面 平面,,點(diǎn)為線段的中點(diǎn),點(diǎn)是線段上的一個(gè)動點(diǎn).
(Ⅰ)求證:平面 平面;
(Ⅱ)設(shè)二面角的平面角為,試判斷在線段上是否存在這樣的點(diǎn),使得,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).且
(1)若,求實(shí)數(shù)的值,并求此時(shí)在上的最小值;
(2)若函數(shù)不存在零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是邊長為2的菱形,∠ABC=60°,平面AEFC⊥平面ABCD,EF∥AC,AE=AB,AC=2EF.
(1)求證:平面BED⊥平面AEFC;
(2)若四邊形AEFC為直角梯形,且EA⊥AC,求二面角B-FC-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,時(shí),.
(1)當(dāng)時(shí),求數(shù)列的前項(xiàng)和;
(2)當(dāng)時(shí),求證:對任意,為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(其中t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)求l和C的直角坐標(biāo)方程.
(2)設(shè)點(diǎn),直線l交曲線C于A,B兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為(),直線的參數(shù)方程為(為參數(shù)).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)己知點(diǎn),直線與曲線交于,兩點(diǎn),若,,成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求直線的直角坐標(biāo)方程與曲線的普通方程;
(Ⅱ)已知點(diǎn)設(shè)直線與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com