【題目】已知直三棱柱ABC﹣A1B1C1的所有棱長都為2,點P,Q分別為棱CC1 , BC的中點,則四面體A1﹣B1PQ的體積為

【答案】
【解析】解:以A為原點,在平面ABC中過A作AC的垂線為x軸,AC為y軸,AA1為z軸, 建立空間直角坐標系,
A1(0,0,2),B1 ,1,2),
Q( , ,0),P(0,2,1),
=( ,﹣1,1),
=( ,﹣ ,﹣1), =(0,﹣2,1),
設(shè)平面PQB1的法向量 =(x,y,z),

取x=1,得 =(1, ,0),
∴A1平面PQB1的距離d= = =
| |= = ,| |= = ,
cos< >= = =
sin< >= = ,
= = = ,
∴四面體A1﹣B1PQ的體積為:
V= = =
所以答案是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】意大利著名數(shù)學(xué)家斐波那契在研究兔子的繁殖問題時,發(fā)現(xiàn)有這樣的一列數(shù):1,1,2,3,5,8,…,該數(shù)列的特點是:前兩個數(shù)均為1,從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.人們把這樣的一列數(shù)組成的數(shù)列{an}稱為斐波那契數(shù)列,則 =(
A.0
B.﹣1
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知常數(shù),在數(shù)列中,首項,是其前項和,且,.

1)設(shè),,證明數(shù)列是等比數(shù)列,并求出的通項公式;

2)設(shè),證明數(shù)列是等差數(shù)列,并求出的通項公式;

3)若當且僅當時,數(shù)列取到最小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】AB為真命題,而BC的逆否命題為真命題,且ABCD的充分條件,而DEBC的充要條件,則¬B是¬E____條件;AE____條件.(填充分”“必要、充要既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩組各有三名同學(xué),他們在一次測試中的成績分別為:甲組:88、89、90;乙組:87、88、92.如果分別從甲、乙兩組中隨機選取一名同學(xué),則這兩名同學(xué)的成績之差的絕對值不超過3的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, .

討論的單調(diào)性;

,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修44,坐標系與參數(shù)方程

已知曲線,直線為參數(shù)).

I)寫出曲線的參數(shù)方程,直線的普通方程;

II)過曲線上任意一點作與夾角為的直線,交于點的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年俄羅斯世界杯激戰(zhàn)正酣,某校工會對全校教職工在世界杯期間每天收看比賽的時間作了一次調(diào)查,得到如下頻數(shù)分布表:

收看時間

(單位:小時)

14

28

20

12

(1)若將每天收看比賽轉(zhuǎn)播時間不低于3小時的教職工定義為球迷,否則定義為非球迷,請根據(jù)頻數(shù)分布表補全列聯(lián)表:

合計

球迷

40

非球迷

合計

并判斷能否有90%的把握認為該校教職工是否為球迷性別有關(guān);

(2)在全校球迷中按性別分層抽樣抽取6名,再從這6球迷中選取2名世界杯知識講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校在2 015年11月份的高三期中考試后,隨機地抽取了50名學(xué)生的數(shù)學(xué)成績并進行了分析,結(jié)果這50名同學(xué)的成績?nèi)拷橛?0分到140分之間.現(xiàn)將結(jié)果按如下方式分為6組,第一組[80,90),第二組[90,100),…第六組[130,140],得到如圖所示的頻率分布直方圖.

(1)試估計該校數(shù)學(xué)的平均成績(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表);
(2)這50名學(xué)生中成績在120分以上的同學(xué)中任意抽取3人,該3人在130分(含130分)以上的人數(shù)記為X,求X的分布列和期望.

查看答案和解析>>

同步練習(xí)冊答案