【題目】設(shè)命題: ,函數(shù)有意義;命題: ,不等式恒成立,如果命題“或”為真命題,命題“且”為假命題,求實(shí)數(shù)的取值范圍.
【答案】實(shí)數(shù) 的取值范圍是.
【解析】試題分析:分別求出命題p,q為真命題時(shí)的等價(jià)條件,利用命題p或q為真命題,p且q為假命題,所以命題與中一個(gè)是真命題,一個(gè)是假命題,求a的范圍即可.
試題解析:
若命題為真命題,則對(duì)任意均成立,
當(dāng)時(shí),顯然不符合題意,
故,解得
所以命題為真
若命題為真命題,則不等式對(duì)任意恒成立,
即對(duì)任意恒成立
而函數(shù)在為減函數(shù),
所以,即
所以命題為真
因?yàn)槊}“或”為真命題,命題“且”為假命題,
所以命題與中一個(gè)是真命題,一個(gè)是假命題,
當(dāng)為真命題, 為假命題時(shí), 的值不存在;
當(dāng)為真命題, 為假命題時(shí),
綜上知,實(shí)數(shù) 的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有人說:“擲一枚骰子一次得到的點(diǎn)數(shù)是2的概率是,這說明擲一枚骰子6次會(huì)出現(xiàn)一次點(diǎn)數(shù)是2.”對(duì)此說法,同學(xué)中出現(xiàn)了兩種不同的看法:一些同學(xué)認(rèn)為這種說法是正確的.他們的理由是:因?yàn)閿S一枚骰子一次得到點(diǎn)數(shù)是2的概率是,所以擲一枚骰子6次得到一次點(diǎn)數(shù)是2的概率P=×6=1,即“擲一枚骰子6次會(huì)出現(xiàn)一次點(diǎn)數(shù)是2”是必然事件,一定發(fā)生.還有一些同學(xué)覺得這種說法是錯(cuò)誤的,但是他們卻講不出是什么理由來.你認(rèn)為這種說法對(duì)嗎?請(qǐng)說出你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,底面為菱形, 平面, , 分別是的中點(diǎn).
(Ⅰ)證明: ;
(Ⅱ)若為上的動(dòng)點(diǎn), 與平面所成最大角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知經(jīng)過原點(diǎn)的直線與橢圓交于兩點(diǎn),點(diǎn)為橢圓上不同于的一點(diǎn),直線的斜率均存在,且直線的斜率之積為.
(1)求橢圓的離心率;
(2)若,設(shè)分別為橢圓的左、右焦點(diǎn),斜率為的直線經(jīng)過橢圓的右焦點(diǎn),且與橢圓交于兩點(diǎn),若點(diǎn)在以為直徑的圓內(nèi)部,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F(xiàn)分別為BC,AD的中點(diǎn),點(diǎn)M在線段PD上. (Ⅰ)求證:EF⊥平面PAC;
(Ⅱ)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A恒過點(diǎn),且與直線: 相切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)探究在曲線上,是否存在異于原點(diǎn)的兩點(diǎn), ,當(dāng)時(shí),直線恒過定點(diǎn)?若存在,求出該定點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由于被墨水污染,一道數(shù)學(xué)題僅能見到如下文字:“已知二次函數(shù)的圖像經(jīng)過,,求證:這個(gè)二次函數(shù)的圖像關(guān)于直線對(duì)稱”,根據(jù)已知消息,題中二次函數(shù)圖像不具有的性質(zhì)是( ).
A. 在軸上的截線段長(zhǎng)是 B. 與軸交于點(diǎn)
C. 頂點(diǎn) D. 過點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),若,則稱為的“不動(dòng)點(diǎn)”;若,則稱為的“穩(wěn)定點(diǎn)”.函數(shù)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為和,即,.
()設(shè)函數(shù),求集合和.
()求證:.
()設(shè)函數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為, , ().
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com