已知是橢圓的兩個焦點,過的直線交橢圓于兩點,若的周長為,則橢圓方程為(  )
A.B.
C.D.
A

試題分析:∵是橢圓的兩個焦點∴c=1,又根據(jù)橢圓的定義,的周長=4a=8,得a=2,進而得b=,所以橢圓方程為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD中,|AB|=2,|BC|=2.E,F(xiàn),G,H分別是矩形四條邊的中點,分別以HF,EG所在的直線為x軸,y軸建立平面直角坐標系,已知=λ,=λ,其中0<λ<1.

(1)求證:直線ER與GR′的交點M在橢圓Γ:+y2=1上;
(2)若點N是直線l:y=x+2上且不在坐標軸上的任意一點,F(xiàn)1、F2分別為橢圓Γ的左、右焦點,直線NF1和NF2與橢圓Γ的交點分別為P、Q和S、T.是否存在點N,使得直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOP+kOQ+kOS+kOT=0?若存在,求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,是橢圓的左、右頂點,橢圓的離心率為,右準線的方程為.

(1)求橢圓方程;
(2)設是橢圓上異于的一點,直線于點,以為直徑的圓記為. ①若恰好是橢圓的上頂點,求截直線所得的弦長;
②設與直線交于點,試證明:直線軸的交點為定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

拋物線,其準線方程為,過準線與軸的交點做直線交拋物線于兩點.
(1)若點中點,求直線的方程;
(2)設拋物線的焦點為,當時,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點,動點滿足
(1)求動點的軌跡的方程;
(2)在直線上取一點,過點作軌跡的兩條切線,切點分別為.問:是否存在點,使得直線//?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,O為坐標原點,A(-2,0),B(2,0),點P為動點,且直線AP與直線BP的斜率之積為-.
(1)求動點P的軌跡C的方程;
(2)過點D(1,0)的直線l交軌跡C于不同的兩點M,N,△MON的面積是否存在最大值?若存在,求出△MON的面積的最大值及相應的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

A(x1y1),B(x2y2)是橢圓C=1(a>b>0)上兩點,已知m,n,若m·n=0且橢圓的離心率e,短軸長為2,O為坐標原點.
(1)求橢圓的方程;
(2)試問△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線交雙曲線兩點,為雙曲線上異于的任意一點,則直線的斜率之積為(       )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,分別為雙曲線的左、右焦點,若在右支上存在點,使得點到直線的距離為,則該雙曲線的離心率的取值范圍是(      )
A.B.C.D.

查看答案和解析>>

同步練習冊答案