【題目】在公差不為零的等差數(shù)列{an}中,已知a1=1,且a1,a2,a5依次成等比數(shù)列.?dāng)?shù)列{bn}滿足bn+1=2bn-1,且b1=3.

(1)求{an},{bn}的通項(xiàng)公式;

(2)設(shè)數(shù)列的前n項(xiàng)和為Sn,試比較Sn與1-的大。

【答案】見解析

【解析】(1)設(shè)數(shù)列{an}的公差為d.

因?yàn)閍1=1,且a1,a2,a5依次成等比數(shù)列,

所以a=a1·a5,即(1+d)2=1·(1+4d),

所以d2-2d=0,解得d=2(d=0不合要求,舍去).

所以an=1+2(n-1)=2n-1.

因?yàn)閎n+1=2bn-1,所以bn+1-1=2(bn-1).

所以{bn-1}是首項(xiàng)為b1-1=2,公比為2的等比數(shù)列.

所以bn-1=2×2n-1=2n.

所以bn=2n+1.

(2)因?yàn)?/span>,

所以Sn+…+=1-,

于是Sn=1--1+.

所以當(dāng)n=1,2時(shí),2n=2n,Sn=1-

當(dāng)n≥3時(shí),2n<2n,Sn<1-.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD∠CDA90°,,M是線段AE上的動(dòng)點(diǎn).

1)試確定點(diǎn)M的位置,使AC∥平面MDF,并說明理由;

2)在(1)的條件下,求平面MDF將幾何體ADEBCF分成的兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)的最小值為1f(0)f(2)3.

(1)f(x)的解析式;

(2)f(x)在區(qū)間[2aa1]上不單調(diào),求實(shí)數(shù)a的取值范圍

(3)在區(qū)間[1,1],yf(x)的圖象恒在y2x2m1的圖象上方,試確定實(shí)數(shù)m的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面為矩形,D

的中點(diǎn),AC⊥平面BCC1B1

(Ⅰ)證明:AB//平面CDB1;

(Ⅱ)若AC=BC=1,BB1=,

(1)求BD的長(zhǎng);

(2)求三棱錐C-DB1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說:“是作品獲得一等獎(jiǎng)”;

乙說:“作品獲得一等獎(jiǎng)”;

丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說:“是作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2016高考江蘇卷】已知函數(shù).設(shè).

(1)求方程的根;

(2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的最大值;

(3)若,函數(shù)有且只有1個(gè)零點(diǎn),求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉辦安全法規(guī)知識(shí)競(jìng)賽,從參賽的高一、高二學(xué)生中各抽出100人的成績(jī)作為樣本,對(duì)高一年級(jí)的100名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),并按, , , 分組,得到成績(jī)分布的頻率分布直方圖(如圖)。

(1)若規(guī)定60分以上(包括60分)為合格,計(jì)算高一年級(jí)這次競(jìng)賽的合格率;

(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此,估計(jì)高一年級(jí)這次知識(shí)競(jìng)賽的學(xué)生的平均成績(jī);

(3)若高二年級(jí)這次競(jìng)賽的合格率為,由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并問是否有的把握認(rèn)為“這次知識(shí)競(jìng)賽的成績(jī)與年級(jí)有關(guān)”。

高一

高二

合計(jì)

合格人數(shù)

不合格人數(shù)

合計(jì)

附:參考數(shù)據(jù)與公式

高一

高二

合計(jì)

合格人數(shù)

a

b

a+b

不合格人數(shù)

c

d

c+d

合計(jì)

a+c

b+d

n

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,點(diǎn)的極坐標(biāo)為,為圓心,4為半徑;又直線的極坐標(biāo)方程為。

(Ⅰ)求直線和圓的普通方程;

試判定直線和圓的位置關(guān)系.若相交,則求直線被圓截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某志愿者到某山區(qū)小學(xué)支教,為了解留守兒童的幸福感,該志愿者對(duì)某班40名學(xué)生進(jìn)行了一次幸福指數(shù)的調(diào)查問卷,并用莖葉圖表示如下(注:圖中幸福指數(shù)低于70,說明孩子幸福感弱;幸福指數(shù)不低于70,說明孩子幸福感強(qiáng)).

(Ⅰ)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷能否有的把握認(rèn)為孩子的幸福感強(qiáng)與是否是留守兒童有關(guān)?

(Ⅱ)從15個(gè)留守兒童中按幸福感強(qiáng)弱進(jìn)行分層抽樣,共抽取5人,又在這5人中隨機(jī)抽取2人進(jìn)行家訪,求這2個(gè)學(xué)生中恰有一人幸福感強(qiáng)的概率.

參考公式: ; 附表:

查看答案和解析>>

同步練習(xí)冊(cè)答案