【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2= ,且直線l經(jīng)過曲線C的左焦點F. ( I )求直線l的普通方程;
(Ⅱ)設(shè)曲線C的內(nèi)接矩形的周長為L,求L的最大值.
【答案】解:(I)曲線C的極坐標(biāo)方程為ρ2= ,即ρ2+ρ2sin2θ=4,
可得直角坐標(biāo)方程:x2+2y2=4,化為: + =1.
∴c= = ,可得作焦點F .
直線l的參數(shù)方程為 (t為參數(shù)),消去參數(shù)t可得:x﹣y=m,
把 代入可得:m=﹣ .
∴直線l的普通方程為:x﹣y+ =0.
(II)設(shè)橢圓C的內(nèi)接矩形在第一象限的頂點為 .
∴橢圓C的內(nèi)接矩形的周長為L=8cosθ+4 sinθ=4 sin(θ+φ)≤4 (其中tanφ= ).
∴橢圓C的內(nèi)接矩形的周長的最大值為4 .
【解析】(I)曲線C的極坐標(biāo)方程為ρ2= ,即ρ2+ρ2sin2θ=4,利用互化公式可得直角坐標(biāo)方程,可得作焦點F .直線l的參數(shù)方程為 (t為參數(shù)),消去參數(shù)t可得:x﹣y=m,把F代入可得:m.(II)設(shè)橢圓C的內(nèi)接矩形在第一象限的頂點為 .可得橢圓C的內(nèi)接矩形的周長為L=8cosθ+4 sinθ=4 sin(θ+φ)(其中tanφ= ).即可得出橢圓C的內(nèi)接矩形的周長的最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(選修4﹣1:幾何證明選講)
如圖,直線AB為圓的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點E,DB垂直BE交圓于D.
(1)證明:DB=DC;
(2)設(shè)圓的半徑為1,BC= ,延長CE交AB于點F,求△BCF外接圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖莖葉圖記錄了甲,乙兩班各六名同學(xué)一周的課外閱讀時間(單位:小時),已知甲班數(shù)據(jù)的平均數(shù)為13,乙班數(shù)據(jù)的中位數(shù)為17,那么x的位置應(yīng)填;y的位置應(yīng)填 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項和為Sn , 若S9=81,a3+a5=14.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn= ,若{bn}的前n項和為Tn , 證明:Tn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若函數(shù)f(x)有最大值M,則M的取值范圍是( )
A.( ,0)
B.(0, ]
C.(0, ]
D.( , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣a|+|2x+2|﹣5(a∈R). (Ⅰ)試比較f(﹣1)與f(a)的大小;
(Ⅱ)當(dāng)a≥﹣1時,若函數(shù)f(x)的圖象和x軸圍成一個三角形,則實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(ax+b)+ex﹣1(a≠0).
(1)當(dāng)a=﹣1,b=1時,判斷函數(shù)f(x)的零點個數(shù);
(2)若f(x)≤ex﹣1+x+1,求ab的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com