【題目】已知x0,x0+是函數(shù)f(x)=cos2(wx﹣)﹣sin2wx(ω>0)的兩個(gè)相鄰的零點(diǎn)
(1)求的值;
(2)若對(duì)任意,都有f(x)﹣m≤0,求實(shí)數(shù)m的取值范圍.
(3)若關(guān)于的方程在上有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.
【答案】(1) (2)(3)
【解析】試題分析:(1)利用三角恒等變形,對(duì)原函數(shù)進(jìn)行化簡(jiǎn)變形,可得,由兩相鄰零點(diǎn)可得函數(shù)最小正周期,再利用最小正周期與的關(guān)系可得函數(shù)表達(dá)式,將代入可得其值;(2)實(shí)數(shù)的取值范圍可轉(zhuǎn)化為求函數(shù)在的最大值問題,利用三角函數(shù)的性質(zhì)可得結(jié)果;(3)類比第二小題,利用分離變量求出的取值范圍,結(jié)合圖象可知與有兩交點(diǎn)時(shí)的范圍.
試題解析:(1)f(x)==
==
=()=.
由題意可知,f(x)的最小正周期T=π,
∴, 又∵ω>0, ∴ω=1,
∴f(x)=.
∴=.
(2)由f(x)﹣m≤0得,f(x)≤m, ∴m≥f(x)max,
∵﹣, ∴, ∴,
∴﹣≤, 即f(x)max=,
∴ 所以
(3)原方程可化為
即
畫出 的草圖
x=0時(shí),y=2sin=,
y的最大值為2,
∴要使方程在x∈[0, ]上有兩個(gè)不同的解,
即≤m+1<2, 即﹣1≤m<1. 所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)求當(dāng)時(shí),的值域;
(2)若函數(shù)在內(nèi)有且只有一個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱ABC-A1B1C1中,AB=AA1,∠CAB=.
(1)證明:CB1⊥BA1;
(2)已知AB=2,BC=,求三棱錐C1-ABA1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問題較為突出,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi),為了了解居民用水情況,通過抽祥,獲得了某年位居民毎人的月均用水量(單位:噸),將數(shù)據(jù)按照分成組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)若該市有萬居民,估計(jì)全市居民中月均用水量不低于噸的人數(shù),并說明理由;
(3)若該市政府希望使的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值(精確到),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面為正方形,⊥底面,分別是的中點(diǎn),.
(Ⅰ)求證∥平面;
(Ⅱ)求直線與平面所成的角;
(Ⅲ)求四棱錐的外接球的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,拋物線上橫坐標(biāo)為的點(diǎn)到拋物線頂點(diǎn)的距離與該點(diǎn)到拋物線準(zhǔn)線的距離相等。
(1)求拋物線的方程;
(2)設(shè)直線與拋物線交于兩點(diǎn),若,求實(shí)數(shù)的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三國(guó)魏人劉徽,自撰《海島算經(jīng)》,專論測(cè)高望遠(yuǎn).其中有一題:今有望海島,立兩表齊,高三丈,前後相去千步,令後表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從後表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高及去表各幾何?翻譯如下:要測(cè)量海島上一座山峰的高度,立兩根高三丈的標(biāo)桿和,前后兩竿相距步,使后標(biāo)桿桿腳與前標(biāo)桿桿腳與山峰腳在同一直線上,從前標(biāo)桿桿腳退行步到,人眼著地觀測(cè)到島峰,、、、三點(diǎn)共線,從后標(biāo)桿桿腳退行步到,人眼著地觀測(cè)到島峰,、、三點(diǎn)也共線,則山峰的高度__________步.(古制步尺,里丈尺步)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若方程有兩個(gè)相異實(shí)根,,且,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com