【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值來衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,記其質(zhì)量指標(biāo)值為,當(dāng)時,產(chǎn)品為一級品;當(dāng)時,產(chǎn)品為二級品,當(dāng)時,產(chǎn)品為三級品,現(xiàn)用兩種新配方(分別稱為配方和配方)做實驗,各生產(chǎn)了件這種產(chǎn)品,并測量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面的試驗結(jié)果 :(以下均視頻率為概率)

配方的頻數(shù)分配表:

指標(biāo)值分組

頻數(shù)

配方的頻數(shù)分配表:

指標(biāo)值分組

頻數(shù)

(1)若從配方產(chǎn)品中有放回地隨機抽取件,記“抽出的配方產(chǎn)品中至少件二級品”為事件,求事件發(fā)生的概率;

(2)若兩種新產(chǎn)品的利潤率與質(zhì)量指標(biāo)滿足如下關(guān)系:,其中,從長期來看,投資哪種配方的產(chǎn)品平均利潤率較大?

【答案】(1);(2)從長期來看,投資A配方產(chǎn)品的平均利潤率較大。

【解析】

先求出抽中二級品的概率,由此能求得答案

分別求出A配方產(chǎn)品的利潤分布列和,B配方產(chǎn)品的利潤分布列和,再根據(jù),即可得到結(jié)論

(1)由題意知,從B配方產(chǎn)品中隨機抽取一次抽中二級品的概率為,

則沒有抽中二級品的概率為,

所以.

(2)A配方產(chǎn)品的利潤分布列為

y

t

5t2

p

0.6

0.4

所以,

B配方產(chǎn)品的利潤分布列為

y

t

5t2

t2

p

0.55

0.4

0.05

所以,

因為

所以

所以從長期來看,投資A配方產(chǎn)品的平均利潤率較大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列滿足,,

1)求數(shù)列的通項公式;

2)求的最大項的值;

3)數(shù)列滿足,問是否存在正整數(shù)k,使得成等差數(shù)列?若存在,求出km的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】珠算之父程大位是我國明代著名的數(shù)學(xué)家,他的應(yīng)用巨著《算法統(tǒng)綜》中有一首竹筒容米問題:家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)四升五,上梢四節(jié)三升八,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容積依次相差同一數(shù)量.)用你所學(xué)的數(shù)學(xué)知識求得中間兩節(jié)竹的容積為

A. 2.2B. 2.3

C. 2.4D. 2.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知P是曲線上的點,Q是曲線上的點,曲線與曲線關(guān)于直線對稱,M為線段PQ的中點,O為坐標(biāo)原點,則的最小值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在四棱錐中,底面是邊長為4的正方形,是正三角形,平面平面分別是的中點.

(1)求證:平面平面;

(2)若是線段上一點,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面四邊形ABCD中,,,(如圖1),若將沿對角線BD折疊,使(如圖2.請在圖2中解答下列問題.

1)證明:

2)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線和曲線的極坐標(biāo)方程;

(2)已知射線),將射線順時針方向旋轉(zhuǎn)得到,且射線與曲線交于兩點,射線與曲線交于兩點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(x+)+sin(x﹣)+cosx.

Ⅰ)求f(x)的最小正周期;

Ⅱ)在△ABC中,f(A)=,△ABC的面積為,AB=,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]:在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線,的直角坐標(biāo)方程;

(2)判斷曲線,是否相交,若相交,請求出交點間的距離;若不相交,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案