【題目】已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為4。
科目:高中數(shù)學 來源: 題型:
【題目】楊輝三角,是二項式系數(shù)在三角形中的一種幾何排列.在歐洲,這個表叫做帕斯卡三角形,帕斯卡(1623-1662)是在1654年發(fā)現(xiàn)這一規(guī)律的.我國南宋數(shù)學家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,這是我國數(shù)學史上的一個偉大成就.如圖所示,在“楊輝三角”中,去除所有為1的項,依次構(gòu)成數(shù)列,則此數(shù)列前135項的和為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在直角坐標系中,曲線C由以原點為圓心,半徑為2的半圓和中心在原點,焦點在x軸上的半橢圓構(gòu)成,以坐標原點為極點,x軸正半軸為極軸建立極坐標系.
(1)寫出曲線C的極坐標方程;
(2)已知射線與曲線C交于點M,點N為曲線C上的動點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)且是定義域為R的奇函數(shù).
求k值;
若,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;
若,且在上的最小值為,求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大提出,堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機摘下了100個蜜柚進行測重,其質(zhì)量分別在, , , , , (單位:克)中,其頻率分布直方圖如圖所示.
(1)按分層抽樣的方法從質(zhì)量落在, 的蜜柚中抽取5個,再從這5個蜜柚中隨機抽取2個,求這2個蜜柚質(zhì)量均小于2000克的概率;
(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個蜜柚等待出售,某電商提出兩種收購方案:
A.所有蜜柚均以40元/千克收購;
B.低于2250克的蜜柚以60元/個收購,高于或等于2250克的以80元/個收購.
請你通過計算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某糧食店經(jīng)銷小麥,年銷售量為6000千克,每千克小麥進貨價為2.8元,銷售價為3.4元,全年進貨若干次,每次的進貨量均為千克(),運費為100元/次,并且全年小麥的總存儲費用為元.
(1)用(千克)表示該糧食店經(jīng)銷小麥的年利潤(元);
(2)每次進貨量為多少千克時,能使年利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年開始,國家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語文、數(shù)學、外語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應(yīng)對新高考,某高中從高一年級1000名學生(其中男生550人,女生450人)中,根據(jù)性別分層,采用分層抽樣的方法從中抽取100名學生進行調(diào)查.
(1)學校計劃在高一上學期開設(shè)選修中的“物理”和“地理”兩個科目,為了了解學生對這兩個科目的選課情況,對抽取到的100名學生進行問卷調(diào)查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目),如表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表.請將列聯(lián)表補充完整,并判斷是否有的把握認為選擇科目與性別有關(guān)?說明你的理由;
(2)在抽取到的女生中按(1)中的選課情況進行分層抽樣,從中抽出9名女生,再從這9名女生中隨機抽取4人,設(shè)這4人中選擇“地理”的人數(shù)為,求的分布列及數(shù)學期望.
選擇“物理” | 選擇“地理” | 總計 | |
男生 | 10 | ||
女生 | 25 | ||
總計 |
附參考公式及數(shù)據(jù):,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)解不等式;
(2)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;
(3)若函數(shù),其中為奇函數(shù), 為偶函數(shù),若不等式對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為偶函數(shù),且函數(shù)圖象的兩相鄰對稱軸間的距離為.
(1)求的值;
(2)求函數(shù)的對稱軸方程;
(3)當時,方程有兩個不同的實根,求m的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com