【題目】已知,的中點(diǎn).

1)若,求向量與向量的夾角的余弦值;

2)若是線段上任意一點(diǎn),且,求的最小值;

3)若點(diǎn)內(nèi)一點(diǎn),且,求的最小值.

【答案】1;(2;(36

【解析】

1)根據(jù)向量數(shù)量積等于,可得,以為原點(diǎn),軸,軸建立平面直角坐標(biāo)系,根據(jù)向量加法、減法以及數(shù)量積的坐標(biāo)表示即可求向量的夾角.

2)以為原點(diǎn),軸,軸建立平面直角坐標(biāo)系,設(shè),利用向量數(shù)量積的坐標(biāo)表示即可求解.

3)設(shè),可得,利用向量的數(shù)量積可得,,再將平方,根據(jù)向量數(shù)量積定義以及基本不等式即可求解.

(1)因?yàn)?/span>,所以,

為原點(diǎn),軸,軸建立平面直角坐標(biāo)系.

,則,

所以,

設(shè)向量,與向量的夾角為

2)因?yàn)?/span>,所以,

為原點(diǎn),軸,軸建立平面直角坐標(biāo)系.

因?yàn)?/span>,則,

設(shè)

,

當(dāng)且僅當(dāng)時(shí),的最小值是

3)設(shè),

,

同理:

當(dāng)且僅當(dāng)時(shí),所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表如下,頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30)

2

0.05

合計(jì)

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且過(guò)點(diǎn)

1)求橢圓的方程;

2)過(guò)橢圓左焦點(diǎn)的直線與橢圓交于兩點(diǎn),直線過(guò)坐標(biāo)原點(diǎn)且直線的斜率互為相反數(shù),直線與橢圓交于兩點(diǎn)且均不與點(diǎn)重合,設(shè)直線的斜率為,直線的斜率為.證明 為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC在內(nèi)角A、B、C的對(duì)邊分別為ab,c,已知a=bcosC+csinB.

)求B;

)若b=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了配合新冠疫情防控,某市組織了以停課不停學(xué),成長(zhǎng)不停歇為主題的空中課堂,為了了解一周內(nèi)學(xué)生的線上學(xué)習(xí)情況,從該市中抽取1000名學(xué)生進(jìn)行調(diào)査,根據(jù)所得信息制作了如圖所示的頻率分布直方圖.

1)為了估計(jì)從該市任意抽取的3名同學(xué)中恰有2人線上學(xué)習(xí)時(shí)間在[200,300)的概率,特設(shè)計(jì)如下隨機(jī)模擬的方法:先由計(jì)算器產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),依次用0,1,2,3,…9的前若干個(gè)數(shù)字表示線上學(xué)習(xí)時(shí)間在[200,300)的同學(xué),剩余的數(shù)字表示線上學(xué)習(xí)時(shí)間不在[200,300)的同學(xué);再以每三個(gè)隨機(jī)數(shù)為一組,代表線上學(xué)習(xí)的情況.

假設(shè)用上述隨機(jī)模擬方法已產(chǎn)生了表中的30組隨機(jī)數(shù),請(qǐng)根據(jù)這批隨機(jī)數(shù)估計(jì)概率的值;

907 966 191 925 271 569 812 458 932 683 431 257 027 556

438 873 730 113 669 206 232 433 474 537 679 138 602 231

2)為了進(jìn)一步進(jìn)行調(diào)查,用分層抽樣的方法從這1000名學(xué)生中抽出20名同學(xué),在抽取的20人中,再?gòu)木上學(xué)習(xí)時(shí)間[350,450)(350分鐘至450分鐘之間)的同學(xué)中任意選擇兩名,求這兩名同學(xué)來(lái)自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究黏蟲(chóng)孵化的平均溫度(單位: )與孵化天數(shù)之間的關(guān)系,某課外興趣小組通過(guò)試驗(yàn)得到如下6組數(shù)據(jù):

組號(hào)

1

2

3

4

5

6

平均溫度

15.3

16.8

17.4

18

19.5

21

孵化天數(shù)

16.7

14.8

13.9

13.5

8.4

6.2

他們分別用兩種模型①,②分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖:

經(jīng)計(jì)算得,

(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?(給出判斷即可,不必說(shuō)明理由)

(2)殘差絕對(duì)值大于1的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除,剔除后應(yīng)用最小二乘法建立關(guān)于的線性回歸方程.(精確到0.1)

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,若函數(shù)有三個(gè)不同的零點(diǎn),,(其中),則的取值范圍為__________

【答案】

【解析】如圖:

,,作出函數(shù)圖象如圖所示

,,作出函數(shù)圖象如圖所示

,由有三個(gè)不同的零點(diǎn)

,如圖

為滿(mǎn)足有三個(gè)零點(diǎn),如圖可得

點(diǎn)睛:本題考查了函數(shù)零點(diǎn)問(wèn)題,先由導(dǎo)數(shù)求出兩個(gè)函數(shù)的單調(diào)性,繼而畫(huà)出函數(shù)圖像,再由函數(shù)的零點(diǎn)個(gè)數(shù)確定參量取值范圍,將問(wèn)題轉(zhuǎn)化為函數(shù)的兩根問(wèn)題來(lái)求解,本題需要化歸轉(zhuǎn)化,函數(shù)的思想,零點(diǎn)問(wèn)題等較為綜合,有很大難度。

型】填空
結(jié)束】
17

【題目】已知等比數(shù)列的前項(xiàng)和為,且滿(mǎn)足.

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列滿(mǎn)足,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖一塊長(zhǎng)方形區(qū)域ABCD,AD=2(km),AB=1(km).在邊AD的中點(diǎn)O處,有一個(gè)可轉(zhuǎn)動(dòng)的探照燈,其照射角∠EOF始終為,設(shè)∠AOE=,探照燈O照射在長(zhǎng)方形ABCD內(nèi)部區(qū)域的面積為S.

(1)當(dāng)0時(shí),寫(xiě)出S關(guān)于的函數(shù)表達(dá)式;

(2)若探照燈每9分鐘旋轉(zhuǎn)“一個(gè)來(lái)回”(OEOA轉(zhuǎn)到OC,再回到OA,稱(chēng)“一個(gè)來(lái)回”,忽略OEOAOC反向旋轉(zhuǎn)時(shí)所用時(shí)間),且轉(zhuǎn)動(dòng)的角速度大小一定,設(shè)AB邊上有一點(diǎn)G,且∠AOG,求點(diǎn)G在“一個(gè)來(lái)回”中,被照到的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)工會(huì)利用 “健步行”開(kāi)展健步走積分獎(jiǎng)勵(lì)活動(dòng)會(huì)員每天走5千步可獲積分30分(不足5千步不積分),每多走2千步再積20分(不足2千步不積分)記年齡不超過(guò)40歲的會(huì)員為類(lèi)會(huì)員,年齡大于40歲的會(huì)員為類(lèi)會(huì)員為了解會(huì)員的健步走情況,工會(huì)從兩類(lèi)會(huì)員中各隨機(jī)抽取名會(huì)員,統(tǒng)計(jì)了某天他們健步走的步數(shù),并將樣本數(shù)據(jù)分為 , , , , , , 九組,將抽取的類(lèi)會(huì)員的樣本數(shù)據(jù)繪制成頻率分布直方圖, 類(lèi)會(huì)員的樣本數(shù)據(jù)繪制成頻率分布表圖、表如下所示).

的值;

從該地區(qū)類(lèi)會(huì)員中隨機(jī)抽取名,設(shè)這名會(huì)員中健步走的步數(shù)在千步以上(含千步)的人數(shù)為,求的分布列和數(shù)學(xué)期望;

設(shè)該地區(qū)類(lèi)會(huì)員和類(lèi)會(huì)員的平均積分分別為,試比較的大。ㄖ恍鑼(xiě)出結(jié)論).

查看答案和解析>>

同步練習(xí)冊(cè)答案