若兩個橢圓的離心率相等,則稱它們?yōu)椤跋嗨茩E圓”.如圖,在直角坐標系xOy中,已知橢圓C1=1,A1A2分別為橢圓C1的左、右頂點.橢圓C2以線段A1A2為短軸且與橢圓C1為“相似橢圓”.
 
(1)求橢圓C2的方程;
(2)設P為橢圓C2上異于A1A2的任意一點,過PPQx軸,垂足為Q,線段PQ交橢圓C1于點H.求證:H為△PA1A2的垂心.(垂心為三角形三條高的交點)
(1)=1(2)見解析
(1)由題意可知A1(-,0),A2(,0),
橢圓C1的離心率e.(3分)
設橢圓C2的方程為=1(ab>0),則b.
因為,所以a=2.
所以橢圓C2的方程為=1.(6分)
(2)設P(x0y0),y0≠0,則=1,從而=12-2
xx0代入=1得=1,從而y2=3-,即y=±.
因為P,Hx軸的同側,所以取y,即H(x0,).(12分)
所以kA1P·kA2H=-1,從而A1PA2H.
又因為PHA1A2,所以H為△PA1A2的垂心.(16分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知命題:方程表示焦點在y軸上的橢圓;
命題:雙曲線的離心率,若為真命題,為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

己知橢圓C:(a>b>0)的右焦點為F(1,0),點A(2,0)在橢圓C上,斜率為1的直線與橢圓C交于不同兩點M,N.
(1)求橢圓C的方程;
(2)設直線過點F(1,0),求線段的長;
(3)若直線過點(m,0),且以為直徑的圓恰過原點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓E=1(ab>0)的右焦點為F(3,0),過點F的直線交EA,B兩點.若AB的中點坐標為(1,-1),則E的方程為(  )
A.=1 B.=1 C.=1 D.=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓C:=1(a>b>0)的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=,則C的離心率為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心為平面直角坐標系xOy的原點,焦點在x軸上,它的一個頂點到兩個焦點的距離分別是7和1.
(1)求橢圓C的方程;
(2)若P為橢圓C上的動點,M為過P且垂直于x軸的直線上的一點,λ,求點M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的中心在原點,焦距為4,一條準線為x=-4,則該橢圓的方程為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦距為(  )
A.  B.2C.4D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為橢圓上的一點,,分別為橢圓的上、下頂點,若△的面積為6,則滿足條件的點的個數(shù)為(   )
A.0B.2C.4D.6

查看答案和解析>>

同步練習冊答案