已知等差數(shù)列的前三項依次為、4、,前項和為,且.
(1)求的值;
(2)設數(shù)列的通項,證明數(shù)列是等差數(shù)列,并求其前項和.
(1);(2).

試題分析:(1)等差數(shù)列的前三項依次為、4、,由等差中項性質(zhì)可求出,從而得到前項和為,再由即可求出的值;(2)由,可得的通項公式,從而得出,即證明了數(shù)列是等差數(shù)列,再由等差數(shù)列前項和可以求出.
試題解析:(1)等差數(shù)列的前三項依次為、4、,所以4是、的等差中項,,
.所以等差數(shù)列的前三項依次為2、4、6,所以首項為2,公差為2.所以等差數(shù)列項和.由,又為正整數(shù),.    7分
(2)由上問得,所以,數(shù)列是等差數(shù)列      9分
,由等差數(shù)列前項和公式,.     14分項和;3.等差數(shù)列的定義.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設遞增等差數(shù)列的前項和為,已知,的等比中項.
(1)求數(shù)列的通項公式; (2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列是首項是2,公比為q的等比數(shù)列,其中的等差中項.
(Ⅰ)求數(shù)列的通項公式.  (Ⅱ)求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在數(shù)列中,).
(1)求的值;
(2)是否存在常數(shù),使得數(shù)列是一個等差數(shù)列?若存在,求的值及的通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設數(shù)列滿足:,,
(Ⅰ)求的通項公式及前項和;
(Ⅱ)已知是等差數(shù)列,為前項和,且,.求的通項公式,并證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

對于任意的不超過數(shù)列的項數(shù)),若數(shù)列的前項和等于該數(shù)列的前項之積,則稱該數(shù)列為型數(shù)列。
(1)若數(shù)列是首項型數(shù)列,求的值;
(2)證明:任何項數(shù)不小于3的遞增的正整數(shù)列都不是型數(shù)列;
(3)若數(shù)列型數(shù)列,且試求的遞推關(guān)系,并證明恒成立。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知無窮數(shù)列中,、 、、構(gòu)成首項為2,公差為-2的等差數(shù)列,、、,構(gòu)成首項為,公比為的等比數(shù)列,其中,.
(1)當,,時,求數(shù)列的通項公式;
(2)若對任意的,都有成立.
①當時,求的值;
②記數(shù)列的前項和為.判斷是否存在,使得成立?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知數(shù)列{}的前n項和為,且,則使不等式成立的n的最大值為           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知{}是等差數(shù)列,a4+a6=6,其前5項和S5=10,則其公差d=___________.

查看答案和解析>>

同步練習冊答案