已知函數(shù),
(1)求的單調(diào)遞減區(qū)間;
(2)若在區(qū)間上的最大值為20,求它在該區(qū)間上的最小值.
(1);(2).

試題分析:(1)對函數(shù)求導(dǎo),可得,由得函數(shù)的單調(diào)遞減區(qū)間; (2)由函數(shù)的單調(diào)區(qū)間可知上單調(diào)遞增.那么分別是在區(qū)間上的最大值和最小值,由最大值,得,代回可求得最小值.
解:(1),令,           ..2分
解得,                 .4分
所以函數(shù)的單調(diào)遞減區(qū)間為.    .6分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054520793848.png" style="vertical-align:middle;" />,,
所以.∵時(shí),,∴上單調(diào)遞增.
上單調(diào)遞減,
所以分別是在區(qū)間上的最大值和最小值. ..10分
于是有,解得.故,
所以,即函數(shù)在區(qū)間上的最小值為  12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若對,有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)若當(dāng)0時(shí),恒成立,則實(shí)數(shù)m的取值范圍是 ( )
A.(0,1)B.(-∞,0)C.D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=ax3-x在R上為減函數(shù),則(  )
A.a(chǎn)≤0B.a(chǎn)<1C.a(chǎn)<0 D.a(chǎn)≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在區(qū)間內(nèi)不是增函數(shù)的是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)關(guān)于的方程f(x)=a在區(qū)間上有兩個(gè)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)上單調(diào)遞增,則實(shí)數(shù)的取值范圍是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),其中,則零點(diǎn)的個(gè)數(shù)是   (  )
A.0個(gè)或1個(gè)B.1個(gè)或2個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)=x2+2f′(1),則f′(0)等于(  )
A.2B.0C.-2D.-4

查看答案和解析>>

同步練習(xí)冊答案