5.下列命題中
①函數(shù)f(x)=($\frac{1}{3}$)x的遞減區(qū)間是(-∞,+∞)
②已知函數(shù)f(x)的定義域為(0,1),則函數(shù)f(x+1)的定義域為(1,2);
③已知(x,y)映射f下的象是(x+y,x-y),那么(4,2)在f下的原象是(3,1).
其中正確命題的序號為①③.

分析 由指數(shù)函數(shù)的單調(diào)性,可判斷①;根據(jù)抽象函數(shù)定義域的求法,可判斷②;求出原象,可判斷③.

解答 解:①函數(shù)f(x)=($\frac{1}{3}$)x的遞減區(qū)間是(-∞,+∞)為真命題;
②已知函數(shù)f(x)的定義域為(0,1),則由x+1∈(0,1)得:x∈(-1,0),
故函數(shù)f(x+1)的定義域為(-1,0);為假命題;
③已知(x,y)映射f下的象是,(x+y,x-y),由$\left\{\begin{array}{l}x+y=4\\ x-y=2\end{array}\right.$得:$\left\{\begin{array}{l}x=3\\ y=1\end{array}\right.$,
那么(4,2)在f下的原象是(3,1)為真命題.
故答案為:①③

點(diǎn)評 本題以命題的真假判斷與應(yīng)用為載體,考查了指數(shù)函數(shù)的單調(diào)性,抽象函數(shù)定義域的求法,映射的概念,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.三個數(shù)0.76,60.7,log0.25的大小關(guān)系為( 。
A.0.76<l log0.25<60.7B.0.76<60.7<l log0.25
C.log0.25<60.7<0.76D.log0.25<0.76<60.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}-6x+6\;\;\;x≥0\\ 3x+3\;\;\;\;\;\;\;\;\;\;x<0\end{array}$,若互不相等的實數(shù)x1,x2,x3滿足f(x1)=f(x2)=f(x3),則x1+x2+x3的取值范圍是(  )
A.(-4,6)B.(-2,6)C.(4,6]D.(4,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)的定義在R上的偶函數(shù),且在區(qū)間(-∞,0]上為減函數(shù),則f(1)、f(-2)、f(3)的大小關(guān)系是(  )
A.f(1)>f(-2)>f(3)B.f(-2)>f(1)>f(3)C.f(1)>f(3)>f(-2)D.f(1)<f(-2)<f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知二次函數(shù)f(x)=ax2+bx+c(a≠0),記f[2](x)=f(f(x)),例:f(x)=x2+1,
則f[2](x)=(f(x))2+1=(x2+1)2+1;
(1)f(x)=x2-x,解關(guān)于x的方程f[2](x)=x;
(2)記△=(b-1)2-4ac,若f[2](x)=x有四個不相等的實數(shù)根,求△的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知等差數(shù)列{an},且a9=20,則S17=( 。
A.170B.200C.340D.360

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.下列命題:①偶數(shù)都可以被2整除;②角平分線上的任一點(diǎn)到這個角的兩邊的距離相等;③正四棱錐的側(cè)棱長相等;④有的實數(shù)是無限不循環(huán)小數(shù);⑤有的菱形是正方形;⑥存在三角形其內(nèi)角和大于180°,既是全稱又是真命題的是①②③,即是特稱命題又是真命題的是④⑤(填上所有滿足要求的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(ex)=x+ex,g0(x)=gi-1′(x)(i=1,2,3,…),則g2016(ln2)=( 。
A.2016+ln8B.4032+ln4C.2016+21n2D.4032+ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知點(diǎn)M(x0,y0)在圓C:x2+y2=4上運(yùn)動,點(diǎn)N(4,0),點(diǎn)P(x,y)為線段MN的中點(diǎn),
(Ⅰ)求點(diǎn)P(x,y)的軌跡方程;
(Ⅱ)求點(diǎn)P(x,y)到直線3x+4y-26=0的距離的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案