【題目】已知D,E是△ABC邊BC的三等分點(diǎn),點(diǎn)P在線段DE上,若 =x +y ,則xy的取值范圍是( )
A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]
【答案】D
【解析】解:D,E是△ABC邊BC的三等分點(diǎn),點(diǎn)P在線段DE上,若 =x +y ,
可得x+y=1,x,y∈[ , ],
則xy≤ = ,當(dāng)且僅當(dāng)x=y= 時(shí)取等號(hào),
并且xy=x(1﹣x)=x﹣x2,函數(shù)的開口向下,對(duì)稱軸為:x= ,當(dāng)x= 或x= 時(shí),取最小值,
xy的最小值為: .
則xy的取值范圍是:[ , ].
故選:D.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用基本不等式在最值問(wèn)題中的應(yīng)用和平面向量的基本定理及其意義,掌握用基本不等式求最值時(shí)(積定和最小,和定積最大),要注意滿足三個(gè)條件“一正、二定、三相等”;如果、是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù)、,使即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=aln(x+1)﹣x2在區(qū)間(0,1)內(nèi)任取兩個(gè)實(shí)數(shù)p,q,且p≠q,不等式 >1恒成立,則實(shí)數(shù)a的取值范圍為( )
A.[15,+∞)
B.(﹣∞,15]
C.(12,30]
D.(﹣12,15]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= + .
(1)求f(x)≥f(4)的解集;
(2)設(shè)函數(shù)g(x)=k(x﹣3),k∈R,若f(x)>g(x)對(duì)任意的x∈R都成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=x3﹣x2+x+1在點(diǎn)(1,2)處的切線與函數(shù)g(x)=x2圍成的圖形的面積等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,b>0,c>0,函數(shù)f(x)=|x+a|﹣|x﹣b|+c的最大值為10.
(1)求a+b+c的值;
(2)求 (a﹣1)2+(b﹣2)2+(c﹣3)2的最小值,并求出此時(shí)a、b、c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)向量 , ,x∈R,記函數(shù) .
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c.若 , ,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》的論割圓術(shù)中有:“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣.”它體現(xiàn)了一種無(wú)限與有限的轉(zhuǎn)化過(guò)程.比如在表達(dá)式1+ 中“”即代表無(wú)數(shù)次重復(fù),但原式卻是個(gè)定值,它可以通過(guò)方程1+ =x求得x= .類比上述過(guò)程,則 =( )
A.3
B.
C.6
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,直線y=4與y軸的交點(diǎn)為P,與拋物線C的交點(diǎn)為Q,且|QF|=2|PQ|,過(guò)F的直線l與拋物線C相交于A,B兩點(diǎn).
(1)求C的方程;
(2)設(shè)AB的垂直平分線l'與C相交于M,N兩點(diǎn),試判斷A,M,B,N四點(diǎn)是否在同一個(gè)圓上?若在,求出l的方程;若不在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ2﹣4ρsinθ+2=0.
(Ⅰ)把圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)將直線l向右平移h個(gè)單位,所得直線l′與圓C相切,求h.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com