【題目】2017年被稱為“新高考元年”,隨著上海、浙江兩地順利實施“語數(shù)外+3”新高考方案,新一輪的高考改革還將繼續(xù)在全國推進.遼寧地區(qū)也將于2020年開啟新高考模式,今年秋季入學(xué)的高一新生將面臨從物理、化學(xué)、生物、政治、歷史、地理等6科中任選三科(共20種選法)作為自己將來高考“語數(shù)外+3”新高考方案中的“3”.某地區(qū)為了順利迎接新高考改革,在某學(xué)校理科班的200名學(xué)生中進行了“學(xué)生模擬選科數(shù)據(jù)”調(diào)查,每個學(xué)生只能從表格中的20種課程組合選擇一種學(xué)習(xí).模擬選課數(shù)據(jù)統(tǒng)計如下表:
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
組合學(xué)科 | 物化生 | 物化政 | 物化歷 | 物化地 | 物生政 | 物生歷 | 物生地 |
人數(shù) | 20人 | 5人 | 10人 | 10人 | 10人 | 15人 | 10人 |
序號 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
組合學(xué)科 | 物政歷 | 物政地 | 物歷地 | 化生政 | 化生歷 | 化生地 | 化政歷 |
人數(shù) | 5人 | 0人 | 5人 | …… | 40人 | …… | …… |
序號 | 15 | 16 | 17 | 18 | 19 | 20 | |
組合學(xué)科 | 化政地 | 化歷地 | 生政歷 | 生政地 | 生歷地 | 政歷地 | 總計 |
人數(shù) | …… | …… | …… | …… | …… | …… | 200人 |
為了解學(xué)生成績與學(xué)生模擬選課之間的關(guān)系,用分層抽樣的方法從這200名學(xué)生中抽取40人的樣本進行分析。
(1)樣本中選擇組合6號“物生歷”的有多少人?樣本中同時選擇學(xué)習(xí)物理和歷史的有多少人?
(2)從樣本選擇學(xué)習(xí)物理且學(xué)習(xí)歷史的學(xué)生中隨機抽取3人,求這3人中至少有2人還要學(xué)習(xí)生物的概率。
【答案】(1)組合號“物生歷”有人,同時選擇學(xué)習(xí)物理和歷史的有人;(2).
【解析】
根據(jù)分層抽樣,按照等比例進行得出各部分的人數(shù).
古典概型,我們可以將所有基本事件都一一列出,用枚舉法.
(1)樣本中選擇組合6號“物生歷”的有人
樣本中同時選擇學(xué)習(xí)物理和歷史的有人.
(2)樣本中同時選擇學(xué)習(xí)物理和歷史的有7人,其中學(xué)習(xí)生物的有人,記為 另外4人記為 則隨機抽取情況為
, , , , , .
共35種,其中至少有2人還要學(xué)習(xí)生物的有13種,
則這3人中至少有2人還要學(xué)習(xí)生物的概率
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司欲生產(chǎn)一款迎春工藝品回饋消費者,工藝品的平面設(shè)計如圖所示,該工藝品由直角和以為直徑的半圓拼接而成,點為半圈上一點(異于,),點在線段上,且滿足.已知,,設(shè).
(1)為了使工藝禮品達到最佳觀賞效果,需滿足,且達到最大.當(dāng)為何值時,工藝禮品達到最佳觀賞效果;
(2)為了工藝禮品達到最佳穩(wěn)定性便于收藏,需滿足,且達到最大.當(dāng)為何值時,取得最大值,并求該最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(a>b>0)的離心率為,且過點(1,).
(1)求橢圓C的方程;
(2)設(shè)與圓O:x2+y2=相切的直線l交橢圓C于A,B兩點,求△OAB面積的最大值,及取得最大值時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA垂直于以AB為直徑的圓所在平面,C為圓上異于A,B的任意一點,垂足為E,點F是PB上一點,則下列判斷中不正確的是( )﹒
A.平面PACB.C.D.平面平面PBC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家射擊隊的某隊員射擊一次,命中7~10環(huán)的概率如表所示:
命中環(huán)數(shù) | 10環(huán) | 9環(huán) | 8環(huán) | 7環(huán) |
概率 | 0.32 | 0.28 | 0.18 | 0.12 |
求該射擊隊員射擊一次 求:
(1)射中9環(huán)或10環(huán)的概率;
(2)至少命中8環(huán)的概率;(3)命中不足8環(huán)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黃金螺旋線又名鸚鵡螺曲線,是自然界最美的鬼斧神工。就是在一個黃金矩形(寬除以長約等于0.6的矩形)先以寬為邊長做一個正方形,然后再在剩下的矩形里面再以其中的寬為邊長做一個正方形,以此循環(huán)做下去,最后在所形成的每個正方形里面畫出1/4圓,把圓弧線順序連接,得到的這條弧線就是“黃金螺旋曲線了。著名的“蒙娜麗莎”便是符合這個比例,現(xiàn)把每一段黃金螺旋線與其每段所在的正方形所圍成的扇形面積設(shè)為,每扇形的半徑設(shè)為滿足,若將的每一項按照上圖方法放進格子里,每一小格子的邊長為1,記前項所占的對應(yīng)正方形格子的面積之和為,則下列結(jié)論錯誤的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量表得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:
(II)估計這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%”的規(guī)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟的飛速發(fā)展,人們的生活水平也同步上升,許許多多的家庭對于資金的管理都有不同的方式。最新調(diào)查表明,人們對于投資理財?shù)呐d趣逐步提高。某投資理財公司做了大量的數(shù)據(jù)調(diào)查,調(diào)查顯示兩種產(chǎn)品投資收益如下:
①投資產(chǎn)品的收益與投資額的算術(shù)平方根成正比;
②投資產(chǎn)品的收益與投資額成正比.
公司提供了投資1萬元時兩種產(chǎn)品的收益,分別是0.4萬元和0.2萬元。
(1) 分別求出產(chǎn)品的收益、產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2) 假如現(xiàn)在你有10萬元的資金全部用于投資理財,你該如何分配資金,才能讓你的收益最大?最大收益是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com