11.從點(diǎn)(4,4)射出的光線,沿著向量$\overrightarrow{e}$=(-$\frac{2}{\sqrt{5}}$,-$\frac{1}{\sqrt{5}}$)的方向射到y(tǒng)軸上,經(jīng)y軸反射后,反射光線必經(jīng)過點(diǎn)( 。
A.(1,2)B.(2,2)C.(3,1)D.(4,0)

分析 由題意求出向量$\overrightarrow{e}$=(-$\frac{2}{\sqrt{5}}$,-$\frac{1}{\sqrt{5}}$)的方向射到y(tǒng)軸上直線斜率k,可得點(diǎn)(4,4)射出的光線沿著向量$\overrightarrow{e}$=(-$\frac{2}{\sqrt{5}}$,-$\frac{1}{\sqrt{5}}$)的方向射到y(tǒng)軸上的直線方程,利用對(duì)稱性求解反射光線的直線方程,考查各選項(xiàng)可得結(jié)論.

解答 解:由題意:向量$\overrightarrow{e}$=(-$\frac{2}{\sqrt{5}}$,-$\frac{1}{\sqrt{5}}$)的方向射到y(tǒng)軸上直線斜率k=$\frac{-\frac{1}{\sqrt{5}}}{-\frac{2}{\sqrt{5}}}=\frac{1}{2}$,
∴點(diǎn)(4,4)射出的光線沿著向量$\overrightarrow{e}$=(-$\frac{2}{\sqrt{5}}$,-$\frac{1}{\sqrt{5}}$)的方向射到y(tǒng)軸上的直線方程為y-4=$\frac{1}{2}$(x-4).
∵經(jīng)過y軸的反射光線與y-4=$\frac{1}{2}$(x-4)關(guān)于y軸對(duì)稱,
設(shè)反射光線的直線方程M(x,y)則關(guān)于y軸對(duì)稱的N為(-x,y)
點(diǎn)N在直線y-4=$\frac{1}{2}$(x-4)上,
∴反射光線的直線方程為y-4=$\frac{1}{2}$(-x-4)
考查各選項(xiàng)可知:D點(diǎn)在反射光線上.
故選D.

點(diǎn)評(píng) 本題考查了直線方程的求法和直線關(guān)于直線對(duì)稱的問題.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)集合A={0,2,3},B={x+1,x},A∩B={3},則實(shí)數(shù)x的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}是首項(xiàng)為1,公比為$\frac{1}{2}$的等比數(shù)列,令Sn=a1+a2+…+an,Tn=a1(a1+a2+…+an)+a2(a2+a3+…+an)+…+an-1(an-1+an)+an2.若對(duì)一切正整數(shù)n,都有Tn>c•Sn2,則c的取值范圍是(-∞,$\frac{4}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若數(shù)列{an}滿足a1=1,a2=2,an=an-1+an-2(n∈N*,n>2),則a6=( 。
A.13B.8C.21D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=(x3-6x2+3x+t)ex,t∈R.
(1)若函數(shù)f(x)有三個(gè)極值點(diǎn),求t的取值范圍;
(2)若函數(shù)f(x)在x=a,x=b,x=c(a<b<c)處取得極值,且a+c=2b2,求f(x)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求下列各式的值:
(1)lg52+$\frac{2}{3}$lg8+lg5•lg20+(lg2)2
(2)cos$\frac{17π}{4}$+sin$\frac{13π}{3}$+tan$\frac{25π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,已知點(diǎn)(x,y)在△ABC所包圍的陰影部分區(qū)域內(nèi)(包含邊界),若B(3,$\frac{5}{2}$)是使得z=ax-y取得最大值的最優(yōu)解,則實(shí)數(shù)a的取值范圍為(  )
A.[-$\frac{1}{2}$,+∞)B.[0,+∞)C.(-∞,-$\frac{1}{2}$]D.[-$\frac{1}{2}$,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x+a|+|x-1|.
(1)當(dāng)a=3時(shí),求不等式f(x)≥x+3a的解集;
(2)若f(x)≤|x-4|的解集包含[0,1],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)=1+x-$\frac{x^2}{2}$+$\frac{x^3}{3}$-$\frac{x^4}{4}$+…+$\frac{{{x^{2015}}}}{2015}$;g(x)=1-x+$\frac{x^2}{2}$-$\frac{x^3}{3}$+$\frac{x^4}{4}$-…-$\frac{{{x^{2015}}}}{2015}$;設(shè)函數(shù)F(x)=[f(x+3)]2015•[g(x-4)]2016,且函數(shù)F(x)的零點(diǎn)均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b-a的最小值為( 。
A.8B.9C.10D.11

查看答案和解析>>

同步練習(xí)冊(cè)答案