若的圖象關(guān)于直線對稱,其中
(1)求的解析式;
(2)將的圖象向左平移個單位,再將得到的圖象的橫坐標變?yōu)樵瓉淼?倍(縱坐標不變)后得到的圖象;若函數(shù)的圖象與的圖象有三個交點且交點的橫坐標成等比數(shù)列,求的值.
(1);(2).
解析試題分析:(1)本題考查了三角函數(shù)的對稱性,利用通解來求解;(2)由圖象變換求得,再利用三交點的橫坐標成等比數(shù)列求得,因此.此題將數(shù)列與三角函數(shù)知識聯(lián)系在一起,在知識的交匯處命題.
試題解析:(1)的圖象關(guān)于直線對稱,
,解得, 2分
5分
(2)將的圖象向左平移個單位后,提到
,再將得到的圖象的橫坐標變?yōu)樵瓉淼?倍(縱坐標不變)后,得到
9分
函數(shù)的圖象與的圖象有三個交點坐標分別為
且
則由已知結(jié)合圖象的對稱性,有,解得 11分
. 12分
考點:1.三角函數(shù)解析式的求解;2.函數(shù)的對稱性;3.三角函數(shù)圖象的變換;4.等比中項.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量a=(2cosx,2sinx),b=(cosx,cosx),設(shè)函數(shù)f(x)=a•b-,求:
(1)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若, 且α∈(,π). 求α.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量和,
(1)設(shè),寫出函數(shù)的最小正周期;并求函數(shù)的單調(diào)區(qū)間;
(2)若,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) 的圖象過點(0, ),最小正周期為 ,且最小值為-1.
(1)求函數(shù)的解析式.
(2)若 ,的值域是 ,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,設(shè)函數(shù).
求的最小正周期與單調(diào)遞增區(qū)間;
在中,分別是角的對邊,若,,的面積為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com