過點P(4,4)作圓C:(x-1)2+y2=25的切線,則切線方程為(  )
分析:由題意知點P在圓上,設(shè)切線方程利用圓心到切線的距離等于半徑求斜率.
解答:解:點P在圓上.當(dāng)切線的斜率存在時,設(shè)過點P(4,4)切線方程:y-4=k(x-4),即 kx-y-4k+4=0,
∵與圓(x-1)2+y2=25相切,∴
|k-4k+4|
k2+1
=5
,∴k=-
3
4

故選A.
點評:本題指引考查圓的切線方程,點在圓上,切線只有一條.需注意若求過圓外一點的切線方程,注意斜率不存在時是否滿足,再利用圓心到切線的距離等于半徑求斜率,易忽略斜率存在不存在,往往漏
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過點P(-1,4)作圓C:(x-1)2+y2=4的切線,則切線方程為
3x-4y-13=0或x=-1
3x-4y-13=0或x=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(-2,4)作圓C:(x-2)2+(y-1)2=25的切線l,直線m:ax-3y=0與直線l平行,則直線l與m的距離為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(-4,-4)作直線l與圓C:(x-1)2+y2=25交于A、B兩點,若|PA|=2,則圓心C到直線l的距離等于
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

過點P(4,4)作圓C:(x-1)2+y2=25的切線,則切線方程為


  1. A.
    3x+4y-28=0
  2. B.
    3x+4y-28=0或x-4=0
  3. C.
    3x-4y+4=0
  4. D.
    3x-4y+4=0或x-4=0

查看答案和解析>>

同步練習(xí)冊答案