【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線和曲線的直角坐標(biāo)方程;
(2)若點(diǎn)坐標(biāo)為,直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
【答案】(1),.(2)或.
【解析】
(1)根據(jù)參數(shù)方程,消參后可得直線直角坐標(biāo)方程;根據(jù)極坐標(biāo)與直角坐標(biāo)方程轉(zhuǎn)化關(guān)系,即可得曲線的直角坐標(biāo)方程;
(2)將直線參數(shù)方程代入曲線的直角坐標(biāo)方程,并設(shè)兩點(diǎn)對(duì)應(yīng)參數(shù)為,,即可由韋達(dá)定理及求得的值.
(1)直線的參數(shù)方程為(為參數(shù)),
直線直角坐標(biāo)方程為,
將,,代入即得,
曲線的直角坐標(biāo)方程為.
(2)將代入,化簡(jiǎn)得,
由判別式得,
設(shè)兩點(diǎn)對(duì)應(yīng)參數(shù)為,,
則,,
依題意有,即,
代入解得或,均滿足,
所以實(shí)數(shù)的值為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在單調(diào)遞增,求的值;
(2)當(dāng)時(shí),設(shè)函數(shù)的最小值為,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在處的切線方程;
(2)若在上恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求函數(shù)的極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線C:上的一點(diǎn),過P作互相垂直的直線PA,PB.與拋物線C的另一交點(diǎn)分別是A,B.
(1)若直線AB的斜率為,求AB方程;
(2)設(shè),當(dāng)時(shí),求△PAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,直線交橢圓于兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)若直線過橢圓的右焦點(diǎn),求的面積;
(2)橢圓上是否存在點(diǎn),使得四邊形為平行四邊形?若存在,求出所有滿足條件的的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,圓錐的底面半徑為2,是圓周上的定點(diǎn),動(dòng)點(diǎn)在圓周上逆時(shí)針旋轉(zhuǎn),設(shè)(),是母線的中點(diǎn),已知當(dāng)時(shí),與底面所成角為.
(1)求該圓錐的側(cè)面積;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代幾何中的勾股容圓,是闡述直角三角形中內(nèi)切圓問題. 此類問題最早見于《九章算術(shù)》“勾股”章,該章第16題為:“今有勾八步,股十五步. 問勾中容圓,徑幾何?”意思是“直角三角形的兩條直角邊分別為8和15,則其內(nèi)切圓直徑是多少?”若向上述直角三角形內(nèi)隨機(jī)拋擲120顆米粒(大小忽略不計(jì),取),落在三角形內(nèi)切圓內(nèi)的米粒數(shù)大約為( )
A.54B.48C.42D.36
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)平面圖如圖1所示,為邊界上的點(diǎn).已知邊界是一段拋物線,其余邊界均為線段,且,拋物線頂點(diǎn)到的距離.以所在直線為軸,所在直線為軸,建立平面直角坐標(biāo)系.
(1)求邊界所在拋物線的解析式;
(2)如圖2,該景區(qū)管理處欲在區(qū)域內(nèi)圍成一個(gè)矩形場(chǎng)地,使得點(diǎn)在邊界上,點(diǎn)在邊界上,試確定點(diǎn)的位置,使得矩形的周長最大,并求出最大周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)判斷并說明函數(shù)的零點(diǎn)個(gè)數(shù).若函數(shù)所有零點(diǎn)均在區(qū)間內(nèi),求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com