【題目】已知圓:,直線(xiàn):.
(1)若直線(xiàn)被圓截得的弦長(zhǎng)為,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),由直線(xiàn)上的動(dòng)點(diǎn)引圓的兩條切線(xiàn),若切點(diǎn)分別為,,則在直線(xiàn)上是否存在一個(gè)定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2) 在直線(xiàn)上存在一個(gè)定點(diǎn),定點(diǎn)坐標(biāo)為.
【解析】
試題(1)根據(jù)直線(xiàn)與圓相交,利用弦長(zhǎng)公式即可;(2)根據(jù)直線(xiàn)與圓相切的條件,列出方程進(jìn)行求解判斷.
試題解析:(1)圓的方程可化為,
故圓心為,半徑.
則圓心到直線(xiàn)的距離為.
又弦長(zhǎng)為,則,
即,解得.
(2)當(dāng)時(shí),圓的方程為 ①
則圓心為,半徑,圓與直線(xiàn)相離.
假設(shè)在直線(xiàn)上存在一個(gè)定點(diǎn)滿(mǎn)足條件,設(shè)動(dòng)點(diǎn),
由已知得PA⊥AC,PB⊥BC,
則在以為直徑的圓即②上,
①—②得,直線(xiàn)的方程為 ③
又點(diǎn)在直線(xiàn)上,則,即,代入③式
得,
即直線(xiàn)的方程為
因?yàn)樯鲜綄?duì)任意都成立,故,得.
故在直線(xiàn)上存在一個(gè)定點(diǎn),定點(diǎn)坐標(biāo)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹(shù)上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.
(1) 試估計(jì)這組數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù);
(2)某經(jīng)銷(xiāo)商來(lái)收購(gòu)芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有個(gè),經(jīng)銷(xiāo)商提出如下兩種收購(gòu)方案:
A:所有芒果以元/千克收購(gòu);
B:對(duì)質(zhì)量低于克的芒果以元/個(gè)收購(gòu),高于或等于克的以元/個(gè)收購(gòu).
通過(guò)計(jì)算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為偶函數(shù).
(Ⅰ)求的最小值;
(Ⅱ)若不等式恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為,(為參數(shù)),圓的標(biāo)準(zhǔn)方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)求直線(xiàn)和圓的極坐標(biāo)方程;
(2)若射線(xiàn)與的交點(diǎn)為,與圓的交點(diǎn)為,且點(diǎn)恰好為線(xiàn)段的中點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知⊙O:x2+y2=6,P為⊙O上動(dòng)點(diǎn),過(guò)P作PM⊥x軸于M,N為PM上一點(diǎn),且 . (Ⅰ)求點(diǎn)N的軌跡C的方程;
(Ⅱ)若A(2,1),B(3,0),過(guò)B的直線(xiàn)與曲線(xiàn)C相交于D、E兩點(diǎn),則kAD+kAE是否為定值?若是,求出該值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出結(jié)論:x+ ≥n+1(n∈N*),則a=( )
A.2n
B.3n
C.n2
D.nn
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名按年齡(單位:歲)分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場(chǎng)的宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者?
(2)請(qǐng)根據(jù)頻率分布直方圖,估計(jì)這100名志愿者樣本的平均數(shù);
(3)在(1)的條件下,該市決定在這6名志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.(參考數(shù)據(jù): )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)復(fù)數(shù)z=2m+(4-m2)i,當(dāng)實(shí)數(shù)m取何值時(shí),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn):
(1)位于虛軸上?
(2)位于一、三象限?
(3)位于以原點(diǎn)為圓心,以4為半徑的圓上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,曲線(xiàn):,曲線(xiàn): .以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系,曲線(xiàn)的參數(shù)方程為(為參數(shù)).
(1)求,的直角坐標(biāo)方程;
(2)與,交于不同四點(diǎn),這四點(diǎn)在上的排列順次為,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com