【題目】在長方體中,,EF,PQ分別為棱的中點,則下列結論正確的是(

A.B.平面EFPQ

C.平面EFPQD.直線所成角的余弦值為

【答案】ACD

【解析】

A.根據(jù)線面垂直作出判斷;B.假設結論成立,然后通過條件驗證假設;C.通過面面平行來證明線面平行;D.將直線平移至同一平面內,然后根據(jù)長度計算異面直線所成角的余弦值.

A.如圖所示,

因為,所以四邊形是正方形,所以

又因為幾何體為長方體,所以平面,所以,

又因為,所以平面,

又因為平面,所以,故結論正確;

B.如圖所示,

假設平面,因為平面,所以

顯然不成立,故假設錯誤,所以結論錯誤;

C.如圖所示,

連接,由條件可知,所以,

又因為,所以平面平面

又因為平面,所以平面,故結論正確;

D.如圖所示,

連接,因為,所以所成角即為或其補角,

由條件可知:,所以,故結論正確.

故選:ABD.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),若存在區(qū)間,使得上的值域為,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,錯誤的是(

A.圓錐所有的軸截面是全等的等腰三角形

B.圓柱的軸截面是過母線的截面中面積最大的一個

C.圓錐的軸截面是所有過頂點的界面中面積最大的一個

D.當球心到平面的距離小于球面半徑時,球面與平面的交線總是一個圓

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新個稅法于2019年1月1日進行實施.為了調查國企員工對新個稅法的滿意程度,研究人員在地各個國企中隨機抽取了1000名員工進行調查,并將滿意程度以分數(shù)的形式統(tǒng)計成如下的頻率分布直方圖,其中.

(1)求的值并估計被調查的員工的滿意程度的中位數(shù);(計算結果保留兩位小數(shù))

(2)若按照分層抽樣從中隨機抽取8人,再從這8人中隨機抽取2人,求至少有1人的分數(shù)在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知甲、乙、丙三位同學在某次考試中總成績列前三名,有,三位學生對其排名猜測如下::甲第一名,乙第二名;:丙第一名;甲第二名;:乙第一名,甲第三名.成績公布后得知,,三人都恰好猜對了一半,則第一名是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知分別是雙曲線的左、右焦點,A為左頂點,P為雙曲線右支上一點,若的最小內角為,則(

A.雙曲線的離心率B.雙曲線的漸近線方程為

C.D.直線與雙曲線有兩個公共點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F為拋物線的焦點,過F且傾斜角為的直線交拋物線于AB兩點,.

1)求拋物線的方程:

2)已知為拋物線上一點,M,N為拋物線上異于P的兩點,且滿足,試探究直線MN是否過一定點?若是,求出此定點;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦點構成的三角形的面積為,直線l的方程為:

)求橢圓的方程;

)已知直線l與橢圓相交于、兩點

若線段中點的橫坐標為,求斜率的值;

已知點,求證:為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】悅跑圈是一款基于社交型的跑步應用,用戶通過該平臺可查看自己某時間段的運動情況,某人根據(jù)月至月期間每月跑步的里程(單位:十公里)的數(shù)據(jù)繪制了下面的折線圖,根據(jù)該折線圖,下 列結論正確的是(

A.月跑步里程逐月增加

B.月跑步里程最大值出現(xiàn)在

C.月跑步里程的中位數(shù)為月份對應的里程數(shù)

D.月至月的月跑步里程相對于月至月波動性更小,變化比較平穩(wěn)

查看答案和解析>>

同步練習冊答案