如圖,某海域內(nèi)的島嶼上有一直立信號塔AB,設(shè)AB延長線與海平面交于點O.測量船在點O的正東方向點C處,測得塔頂A的仰角為30°,然后測量船沿CO方向航行至D處,當(dāng)CD=100(-1)米時,測得塔頂A的仰角為45°.
(1)求信號塔頂A到海平面的距離AO;
(2)已知AB=52米,測量船在沿CO方向航行的過程中,設(shè)DO=x,則當(dāng)x為何值時,使得在點D處觀測信號塔AB的視角∠ADB最大.

【答案】分析:(1)由題意知,在△ACD中,∠ACD=30°,∠DAC=15°,利用正弦定理可求得AD,在直角△AOD中,∠ADO=45°,從而可求得AO;
(2)設(shè)∠ADO=α,∠BDO=β,依題意,tanα=,tanβ=,可求得tan∠ADB=tan(α-β)==,利用基本不等式可求得tan∠ADB的最大值,從而可得答案.
解答:解:(1)由題意知,在△ACD中,∠ACD=30°,∠DAC=15°,…(2分)
所以=,得AD=100,…(5分)
在直角△AOD中,∠ADO=45°,所以AO=100(米);             …(7分)

(2)設(shè)∠ADO=α,∠BDO=β,由(1)知,BO=48米,
則tanα=,tanβ=,…(9分)
tan∠ADB=tan(α-β)===,…(11分)
所以tan∠ADB==,…(13分)
當(dāng)且僅當(dāng)x=即x=40亦即DO=40時,
tan∠ADB取得最大值,…(14分)
此時點D處觀測信號塔AB的視角∠ADB最大.                      …(15分)
點評:本題考查正弦定理,考查兩角和與差的正切函數(shù),突出考查基本不等式的應(yīng)用,考查分析與運算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某海域內(nèi)的島嶼上有一直立信號塔AB,設(shè)AB延長線與海平面交于點O.測量船在點O的正東方向點C處,測得塔頂A的仰角為30°,然后測量船沿CO方向航行至D處,當(dāng)CD=100(
3
-1)米時,測得塔頂A的仰角為45°.
(1)求信號塔頂A到海平面的距離AO;
(2)已知AB=52米,測量船在沿CO方向航行的過程中,設(shè)DO=x,則當(dāng)x為何值時,使得在點D處觀測信號塔AB的視角∠ADB最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省揚州中學(xué)高一(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,某海域內(nèi)的島嶼上有一直立信號塔AB,設(shè)AB延長線與海平面交于點O.測量船在點O的正東方向點C處,測得塔頂A的仰角為30°,然后測量船沿CO方向航行至D處,當(dāng)CD=100(-1)米時,測得塔頂A的仰角為45°.
(1)求信號塔頂A到海平面的距離AO;
(2)已知AB=52米,測量船在沿CO方向航行的過程中,設(shè)DO=x,則當(dāng)x為何值時,使得在點D處觀測信號塔AB的視角∠ADB最大.

查看答案和解析>>

同步練習(xí)冊答案