已知等差數(shù)列{an}的前n項(xiàng)和為Sn且滿足S17>0,S18<0,則
S1
a1
,
S2
a2
,…,
S17
a17
中最大的項(xiàng)為( 。
分析:由題意可得a9>0,a10<0,由此可知
S1
a1
>0,
S2
a2
>0,…,
S10
a10
<0,
S11
a11
<0,…,
S17
a17
<0,即可得出答案.
解答:解:∵等差數(shù)列{an}中,S17>0,且S18<0
即S17=17a9>0,S18=9(a10+a9)<0  
∴a10+a9<0,a9>0,∴a10<0,
∴等差數(shù)列{an}為遞減數(shù)列,
故可知a1,a2,…,a9為正,a10,a11…為負(fù);
∴S1,S2,…,S17為正,S18,S19,…為負(fù),
S1
a1
>0,
S2
a2
>0,…,
S10
a10
<0,
S11
a11
<0,…,
S17
a17
<0,
又∵S1<S2<…<S9,a1>a2>…>a9,
S1
a1
S2
a2
,…,
S17
a17
中最大的項(xiàng)為
S9
a9

故選D
點(diǎn)評:本題考查學(xué)生靈活運(yùn)用等差數(shù)列的前n項(xiàng)和的公式化簡求值,掌握等差數(shù)列的性質(zhì),屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊答案