設(shè)函數(shù)
(1)設(shè),,證明:在區(qū)間內(nèi)存在唯一的零點;
(2)設(shè)為偶數(shù),,,求的最小值和最大值;
(3)設(shè),若對任意,有,求的取值范圍;
(1)在區(qū)間內(nèi)存在唯一的零點.
(2)(3)。
【解析】
試題分析:(1)由,,得
對恒成立,從而在單調(diào)遞增,
又,,
即在區(qū)間內(nèi)存在唯一的零點. 分
(2)因為
由線性規(guī)劃
(或,) 分
(3)當(dāng)時,
(Ⅰ)當(dāng)或時,即或,此時
只需滿足,從而
(Ⅱ)當(dāng)時,即,此時
只需滿足,即
解得:,從而
(Ⅲ)當(dāng)時,即,此時
只需滿足,即
解得:,從而
綜上所述: 分
考點:本題主要考查集合的概念,函數(shù)與方程,導(dǎo)數(shù)研究函數(shù)單調(diào)性的應(yīng)用,指數(shù)函數(shù)性質(zhì),不等式解法。
點評:綜合題,本題綜合性較強,難度較大。確定方程只有一個實根,通過構(gòu)造函數(shù),研究其單調(diào)性實現(xiàn)。由,確定得到,進一步得到,求得b的范圍。
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2x+1-n |
x2+x+1 |
lim |
n→∞ |
| ||
Cn |
1 |
C1 |
1 |
C2 |
1 |
Cn |
m |
25 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com