(本小題滿分13分)已知函數(shù).
(1)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的取值范圍.
(2)記函數(shù),若的最小值是,求函數(shù)的解析式.
(1);(2)
解析試題分析:(1)首先函數(shù)的求導(dǎo)數(shù),在構(gòu)造一個(gè)函數(shù),對(duì)其求導(dǎo),求出單調(diào)區(qū)間,找h(x)的最大值即可.(2)先整理出g(x)的解析式,然后求導(dǎo),利用導(dǎo)數(shù)求出g(x)取最小值-6時(shí),對(duì)應(yīng)a的值,即可求出f(x)的解析式.
試題解析:⑴
∴在上恒成立
令
∵恒成立
∴
∴
(2)
∵
易知時(shí), 恒成立
∴無(wú)最小值,不合題意
∴
令,則(舍負(fù))
列表如下,(略)可得,
在 (上單調(diào)遞減,在上單調(diào)遞增,則是函數(shù)的極小值點(diǎn)。
解得
考點(diǎn):1.求函數(shù)的導(dǎo)數(shù);2.利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和最值;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求函數(shù)在上的最小值;
(2)若函數(shù)有兩個(gè)不同的極值點(diǎn)、且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
湖北宜昌“三峽人家”風(fēng)景區(qū)為提高經(jīng)濟(jì)效益,現(xiàn)對(duì)某一景點(diǎn)進(jìn)行改造升級(jí),從而擴(kuò)大內(nèi)需,提高旅游增加值,經(jīng)過(guò)市場(chǎng)調(diào)查,旅游增加值萬(wàn)元與投入萬(wàn)元之間滿足:,為常數(shù),當(dāng)萬(wàn)元時(shí),萬(wàn)元;當(dāng)萬(wàn)元時(shí),萬(wàn)元.(參考數(shù)據(jù):,,)
(Ⅰ)求的解析式;
(Ⅱ)求該景點(diǎn)改造升級(jí)后旅游利潤(rùn)的最大值.(利潤(rùn)=旅游收入-投入)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè),函數(shù)
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),求函數(shù)的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若在區(qū)間上單調(diào)遞增,試求的取值或取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),其中為常數(shù)。
(Ⅰ)當(dāng)時(shí),判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)若函數(shù)有極值點(diǎn),求的取值范圍及的極值點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),.
(1)記為的導(dǎo)函數(shù),若不等式在上有解,求實(shí)數(shù)的取值范圍;
(2)若,對(duì)任意的,不等式恒成立.求(,)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com