【題目】已知函數(shù).

(1)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的值;

(2)證明:當(dāng)時(shí), .

【答案】(1)1;(2)見(jiàn)解析.

【解析】試題分析:

(1)討論函數(shù)的單調(diào)性可得滿足題意時(shí),解得.

(2)結(jié)合(1)的結(jié)論不妨設(shè),結(jié)合函數(shù)的性質(zhì)即可證得題中的不等式.

試題解析:

(1)方法1: ,

時(shí), ; 時(shí), ; 時(shí), ;

上單調(diào)遞減,在上單調(diào)遞增,

,∵有且只有一個(gè)零點(diǎn),

,∴.

方法2:由題意知方程僅有一實(shí)根,

(),

, ,

時(shí), ; 時(shí), ; 時(shí), ,

上單調(diào)遞增,在上單調(diào)遞減,

,

所以要使僅有一個(gè)零點(diǎn),則.

方法3:函數(shù)有且只有一個(gè)零點(diǎn)即為直線與曲線相切,設(shè)切點(diǎn)為,

,∴,∴

所以實(shí)數(shù)的值為1.

(2)由(1)知,即當(dāng)且僅當(dāng)時(shí)取等號(hào),

,令得, ,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 2Sn=an+1﹣2n+1+1,n∈N* , 且a1 , a2+5,a3成等差數(shù)列.
(1)求a1
(2)證明 為等比數(shù)列,并求數(shù)列{an}的通項(xiàng);
(3)設(shè)bn=log3(an+2n),且Tn= ,證明Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)f(x)是定義在(﹣3,3)上的奇函數(shù),當(dāng)0<x<3時(shí),函數(shù)f(x)的圖象如圖所示,那么不等式f(x)cosx<0的解集是(

A.(﹣3,﹣ )∪(0,1)∪( ,3)
B.(﹣ ,﹣1)∪(0,1)∪( ,3)
C.(﹣3,﹣1)∪(0,1)∪(1,3)
D.(﹣3,﹣ )∪(0,1)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn , 且Sn=2n2+3n;
(1)求它的通項(xiàng)an
(2)若bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列四組函數(shù)中,f(x)與g(x)表示同一函數(shù)的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E為CC1的中點(diǎn),那么異面直線OE與AD1所成角的余弦值等于(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC= ,O,M分別為AB,VA的中點(diǎn).

(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V﹣ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)滿足f(x)=ax2+bx+c(a≠0),滿足f(x+1)﹣f(x)=2x,且f(0)=1,
(1)函數(shù)f(x)的解析式:
(2)函數(shù)f(x)在區(qū)間[﹣1,1]上的最大值和最小值:
(3)若當(dāng)x∈R時(shí),不等式f(x)>3x﹣a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x2﹣(m﹣1)x+2m
(1)若函數(shù)f(x)>0在(0,+∞)上恒成立,求m的取值范圍;
(2)若函數(shù)f(x)在(0,1)內(nèi)有零點(diǎn),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案