【題目】檳榔原產(chǎn)于馬來西亞,中國主要分布在云南、海南及臺(tái)灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實(shí)作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國際癌癥研究機(jī)構(gòu)列為致癌物清單Ⅰ類致癌物.云南某民族中學(xué)為了解,兩個(gè)少數(shù)民族班學(xué)生咀嚼檳榔的情況,分別從這兩個(gè)班中隨機(jī)抽取5名同學(xué)進(jìn)行調(diào)查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個(gè)位數(shù)字).
(1)你能否估計(jì)哪個(gè)班級(jí)學(xué)生平均每周咀嚼檳榔的顆數(shù)較多?
(2)從班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過21的數(shù)據(jù)記為,求的概率;
【答案】(1)班學(xué)生(2)
【解析】
(1)班學(xué)生每周平均咀嚼檳榔的顆數(shù)為17顆,班學(xué)生每周平均咀嚼檳榔的顆數(shù)為19顆.故估計(jì)班學(xué)生平均每周咀嚼檳榔的顆數(shù)較多.(2)利用古典概型的概率計(jì)算的概率.
解:(1)班樣本數(shù)據(jù)的平均值為.由此估計(jì)班學(xué)生每周平均咀嚼檳榔的顆數(shù)為17顆;
班樣本數(shù)據(jù)的平均值為,由此估計(jì)班學(xué)生每周平均咀嚼檳榔的顆數(shù)為19顆.故估計(jì)班學(xué)生平均每周咀嚼檳榔的顆數(shù)較多.
(2)班的樣本數(shù)據(jù)中不超過19的數(shù)據(jù)有3個(gè),分別為9,11,14,班的樣本數(shù)據(jù)中不超過21的數(shù)據(jù)也有3個(gè),分別為11,12,21.
從班和班的樣本數(shù)據(jù)中各隨機(jī)抽取一個(gè)共有9種不同情況,
分別為,,,,,,,,.
其中的情況有,,三種,
故的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著西部大開發(fā)的深入,西南地區(qū)的大學(xué)越來越受到廣大考生的青睞,下表是西南地區(qū)某大學(xué)近五年的錄取平均分高于省一本線分值對(duì)比表:
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
錄取平均分高于省一本線分值 | 28 | 34 | 41 | 47 | 50 |
(1)根據(jù)上表數(shù)據(jù)可知,與之間存在線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;
(2)假設(shè)2020年該省一本線為520分,利用(1)中求出的回歸方程預(yù)測2020年該大學(xué)錄取平均分.
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:內(nèi)一點(diǎn),點(diǎn)為圓上任意一點(diǎn),線段的垂直平分線與線段連線交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,過點(diǎn)的直線與曲線交于不同的兩點(diǎn)、,求的內(nèi)切圓半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為,是橢圓上的一點(diǎn),且在第一象限內(nèi),過且斜率等于-1的直線與橢圓交于另一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為.
(1)證明:直線的斜率為定值;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線:,過點(diǎn)的直線的參數(shù)方程為:(為參數(shù)),直線與曲線分別交于、兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)求線段的長和的積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“科技引領(lǐng),布局未來”科技研發(fā)是企業(yè)發(fā)展的驅(qū)動(dòng)力量。年,某企業(yè)連續(xù)年累計(jì)研發(fā)投入搭億元,我們將研發(fā)投入與經(jīng)營投入的比值記為研發(fā)投入占營收比,這年間的研發(fā)投入(單位:十億元)用右圖中的折現(xiàn)圖表示,根據(jù)折線圖和條形圖,下列結(jié)論錯(cuò)誤的使( )
A. 年至年研發(fā)投入占營收比增量相比年至年增量大
B. 年至年研發(fā)投入增量相比年至年增量小
C. 該企業(yè)連續(xù)年研發(fā)投入逐年增加
D. 該企業(yè)來連續(xù)年來研發(fā)投入占營收比逐年增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有甲,乙兩個(gè)車間生產(chǎn)同一種產(chǎn)品,,甲車間有工人人,乙車間有工人人,為比較兩個(gè)車間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,甲車間抽取的工人記作第一組,乙車間抽取的工人記作第二組,并對(duì)他們中每位工人生產(chǎn)完成的一件產(chǎn)品的事件(單位:)進(jìn)行統(tǒng)計(jì),按照進(jìn)行分組,得到下列統(tǒng)計(jì)圖.
分別估算兩個(gè)車間工人中,生產(chǎn)一件產(chǎn)品時(shí)間少于的人數(shù)
分別估計(jì)兩個(gè)車間工人生產(chǎn)一件產(chǎn)品時(shí)間的平均值,并推測車哪個(gè)車間工人的生產(chǎn)效率更高?
從第一組生產(chǎn)時(shí)間少于的工人中隨機(jī)抽取人,記抽取的生產(chǎn)時(shí)間少于的工人人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( )
A. 在回歸模型中,預(yù)報(bào)變量的值不能由解釋變量唯一確定
B. 若變量,滿足關(guān)系,且變量與正相關(guān),則與也正相關(guān)
C. 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D. 以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)絡(luò)營銷部門為了統(tǒng)計(jì)某市網(wǎng)友某日在某淘寶店的網(wǎng)購情況,隨機(jī)抽查了該市當(dāng)天名網(wǎng)友的網(wǎng)購金額情況,得到如下統(tǒng)計(jì)表(如圖).
網(wǎng)購金額(單位:千元) | 頻數(shù) | 頻率 |
3 | 0.05 | |
9 | 0.15 | |
15 | 0.25 | |
18 | 0.30 | |
若網(wǎng)購金額超過千元的顧客定義為“網(wǎng)購達(dá)人”,網(wǎng)購金額不超過千元的顧客定義為“非網(wǎng)購達(dá)人”,已知“非網(wǎng)購達(dá)人”與“網(wǎng)購達(dá)人”人數(shù)比恰好為.
(Ⅰ)試確定的值,并補(bǔ)全頻率分布直方圖(如圖);
(Ⅱ)該營銷部門為了進(jìn)一步了解這名網(wǎng)友的購物體驗(yàn),從“非網(wǎng)購達(dá)人”與“網(wǎng)購達(dá)人”中用分層抽樣的方法抽取人,若需從這人中隨機(jī)選取人進(jìn)行問卷調(diào)查.設(shè)為選取的人中“網(wǎng)購達(dá)人”的人數(shù),求的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com