已知F是橢圓C:+=1(a>b>0)的右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF與圓(x-2+y2=相切于點(diǎn)Q,且=2,則橢圓C的離心率等于(  )
A.B.C.D.
A
記橢圓的左焦點(diǎn)為F′,

圓(x-)2+y2=的圓心為E,
連接PF′、QE.
∵|EF|=|OF|-|OE|=c-=,=2,
==,
∴PF′∥QE,
=,且PF′⊥PF.
又∵|QE|=(圓的半徑長),
∴|PF′|=b.
據(jù)橢圓的定義知:|PF′|+|PF|=2a,
∴|PF|=2a-b.
∵PF′⊥PF,
∴|PF′|2+|PF|2=|F′F|2,
∴b2+(2a-b)2=(2c)2,
∴2(a2-c2)+b2=2ab,
∴3b2=2ab,
∴b=,c==a,=,
∴橢圓的離心率為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知常數(shù),向量,經(jīng)過定點(diǎn)為方向向量的直線與經(jīng)過定點(diǎn)為方向向量的直線相交于,其中,
(1)求點(diǎn)的軌跡的方程;(2)若,過的直線交曲線兩點(diǎn),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,右焦點(diǎn)到直線的距離為
(1)求橢圓的方程;
(2)過橢圓右焦點(diǎn)F2斜率為)的直線與橢圓相交于兩點(diǎn),為橢圓的右頂點(diǎn),直線分別交直線于點(diǎn),線段的中點(diǎn)為,記直線的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)、為雙曲線的左、右焦點(diǎn),過作垂直于軸的直線,在軸上方交雙曲線于點(diǎn),且.圓的方程是
(1)求雙曲線的方程;
(2)過雙曲線上任意一點(diǎn)作該雙曲線兩條漸近線的垂線,垂足分別為,求的值;
(3)過圓上任意一點(diǎn)作圓的切線交雙曲線、兩點(diǎn),中點(diǎn)為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓,直線的方程為,過右焦點(diǎn)的直線與橢圓交于異于左頂點(diǎn)兩點(diǎn),直線交直線分別于點(diǎn),
(1)當(dāng)時(shí),求此時(shí)直線的方程;
(2)試問,兩點(diǎn)的縱坐標(biāo)之積是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線與直線相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)是(1,2)。如果拋物線的焦點(diǎn)為F,那么等于(    )
A. 5         B.6            C.     D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的離心率e=,一條準(zhǔn)線方程為x=
(1)求橢圓C的方程;
(2)設(shè)G、H為橢圓C上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且OG⊥OH.
①當(dāng)直線OG的傾斜角為60°時(shí),求△GOH的面積;
②是否存在以原點(diǎn)O為圓心的定圓,使得該定圓始終與直線GH相切?若存在,請求出該定圓方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以下幾個(gè)命題中:其中真命題的序號為_________________(寫出所有真命題的序號)
①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),,則動(dòng)點(diǎn)P的軌跡為雙曲線;
②過定圓C上一定點(diǎn)A作圓的動(dòng)弦AB,O為坐標(biāo)原點(diǎn),若則動(dòng)點(diǎn)P的軌跡為橢圓;
③雙曲線有相同的焦點(diǎn);
④在平面內(nèi),到定點(diǎn)的距離與到定直線的距離相等的點(diǎn)的軌跡是拋物線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,直線l:y=x+b與拋物線C:x2=4y相切于點(diǎn)A.

(1)求實(shí)數(shù)b的值;
(2)求以點(diǎn)A為圓心,且與拋物線C的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

同步練習(xí)冊答案