【題目】小明騎車上學,開始時勻速行駛,途中因交通堵塞停留了一段時間,后為了趕時間加快速度行駛.與以上事件吻合得最好的圖象是(
A.
B.
C.
D.

【答案】C
【解析】解:考查四個選項,橫坐標表示時間,縱坐標表示的是離開學校的距離,由此知,此函數(shù)圖象一定是下降的,由此排除A;再由小明騎車上學,開始時勻速行駛可得出圖象開始一段是直線下降型,又途中因交通堵塞停留了一段時間,故此時有一段函數(shù)圖象與x軸平行,由此排除D,
之后為了趕時間加快速度行駛,此一段時間段內(nèi)函數(shù)圖象下降的比較快,由此可確定C正確,B不正確.
故選:C
【考點精析】掌握函數(shù)的表示方法是解答本題的根本,需要知道函數(shù)的三種表示方法解析法:就是用數(shù)學表達式表示兩個變量之間的對應關系;列表法:就是列出表格來表示兩個變量之間的對應關系;圖象法:就是用圖象表示兩個變量之間的對應關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若a>b>1,0<c<1,則( )
A.ac<bc
B.abc<bac
C.ca<cb
D.logac<logbc

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校學生社團為了解“大數(shù)據(jù)時代”下大學生就業(yè)情況的滿意度,對20名學生進行問卷計分調(diào)查(滿分100分),得到如圖所示的莖葉圖:

(1)計算男生打分的平均分,觀察莖葉圖,評價男女生打分的分散程度;

(2)從打分在80分以上的同學隨機抽3人,求被抽到的女生人數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓O的方程為x2+y2=1,直線l1過點A(3,0),且與圓O相切.
(1)求直線l1的方程;
(2)設圓O與x軸相交于P,Q兩點,M是圓O上異于P,Q的任意一點,過點A且與x軸垂直的直線為l2 , 直線PM交直線l2于點P′,直線QM交直線l2于點Q′.求證:以P′Q′為直徑的圓C總經(jīng)過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將52志愿者分成A,B兩參加義務植樹活動,A種植150白楊樹苗B種植200沙棘樹苗.假定A,B兩組同時開始種植.

(1)根據(jù)歷年統(tǒng)計,每名志愿者種植一捆白楊樹苗用時小時,種植一捆沙棘樹苗用時小時.應如何分配A,B兩組的人數(shù),使植樹活動持續(xù)時間最短?

(2)在按(1)分配的人數(shù)種植1小時發(fā)現(xiàn),每名志愿者種植一捆白楊樹苗用時仍為小時,而名志愿者種植一捆沙棘樹苗實際用時小時于是A組抽調(diào)6志愿者加入B組繼續(xù)種植,求植樹活動所持續(xù)的時間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PA⊥平面ABC,AC⊥BC,D為側棱PC的中點,它的正(主)視圖和側(左)視圖如圖所示.

(Ⅰ)求三棱錐P﹣ABD的體積.
(Ⅱ)在∠ACB的平分線所在直線上確定一點Q,使得PQ∥平面ABD,并求此時PQ的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求不等式的解集;

(2)若的解集包含,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p:直線y=(2m+1)x+m﹣2的圖象不經(jīng)過第四象限,q:方程x2+ =1表示焦點在x軸上的橢圓,若(¬p)∨q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= + 的兩個極值點分別為x1 , x2 , 且x1∈(0,1),x2∈(1,+∞);點P(m,n)表示的平面區(qū)域為D,若函數(shù)y=loga(x+4)(a>1)的圖象上存在區(qū)域D內(nèi)的點,則實數(shù)a的取值范圍是(
A.(1,3]
B.(1,3)
C.(3,+∞)
D.[3,+∞)

查看答案和解析>>

同步練習冊答案