【題目】已知函數(shù).
討論函數(shù)的極值點(diǎn)的個(gè)數(shù);
若函數(shù)有兩個(gè)極值點(diǎn),,證明:.
【答案】(1)見(jiàn)解析 (2)見(jiàn)解析
【解析】
先求出函數(shù)的導(dǎo)函數(shù),通過(guò)討論a的范圍確定導(dǎo)函數(shù)的符號(hào),從而得出函數(shù)的單調(diào)區(qū)間,進(jìn)而判斷函數(shù)極值點(diǎn)個(gè)數(shù);
由可知當(dāng)且僅當(dāng)時(shí)有極小值和極大值,且,是方程的兩個(gè)正根,則,根據(jù)函數(shù)表示出,令,通過(guò)對(duì)求導(dǎo)即可證明結(jié)論.
解:函數(shù),
,
,當(dāng)時(shí),,,
當(dāng)時(shí),,單調(diào)遞減;
當(dāng)時(shí),,單調(diào)遞增;
當(dāng)時(shí),有極小值;
當(dāng)時(shí),,故,
在上單調(diào)遞減,故此時(shí)無(wú)極值;
當(dāng)時(shí),,方程有兩個(gè)不等的正根,.
可得,.
則當(dāng)及時(shí),
,單調(diào)遞減;
當(dāng)時(shí), ;單調(diào)遞增;
在處有極小值,在處有極大值.
綜上所述:當(dāng)時(shí),有1個(gè)極值點(diǎn);
當(dāng)時(shí),沒(méi)有極值點(diǎn);
當(dāng)時(shí),有2個(gè)極值點(diǎn).
由可知當(dāng)且僅當(dāng)時(shí)有極小值點(diǎn)
和極大值點(diǎn),且,是方程的兩個(gè)正根,
則,.
;
令,
;,
在上單調(diào)遞減,故,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),國(guó)資委.黨委高度重視扶貧開(kāi)發(fā)工作,堅(jiān)決貫徹落實(shí)中央扶貧工作重大決策部署,在各個(gè)貧困縣全力推進(jìn)定點(diǎn)扶貧各項(xiàng)工作,取得了積極成效,某貧困縣為了響應(yīng)國(guó)家精準(zhǔn)扶貧的號(hào)召,特地承包了一塊土地,已知土地的使用面積以及相應(yīng)的管理時(shí)間的關(guān)系如下表所示:
土地使用面積(單位:畝) | 1 | 2 | 3 | 4 | 5 |
管理時(shí)間(單位:月) | 8 | 10 | 13 | 25 | 24 |
并調(diào)查了某村300名村民參與管理的意愿,得到的部分?jǐn)?shù)據(jù)如下表所示:
愿意參與管理 | 不愿意參與管理 | |
男性村民 | 150 | 50 |
女性村民 | 50 |
(1)求出相關(guān)系數(shù)的大小,并判斷管理時(shí)間與土地使用面積是否線(xiàn)性相關(guān)?
(2)是否有99.9%的把握認(rèn)為村民的性別與參與管理的意愿具有相關(guān)性?
(3)若以該村的村民的性別與參與管理意愿的情況估計(jì)貧困縣的情況,則從該貧困縣中任取3人,記取到不愿意參與管理的男性村民的人數(shù)為,求的分布列及數(shù)學(xué)期望。
參考公式:
其中。臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),把函數(shù)的圖象向右平移個(gè)單位,再把圖象上所有的點(diǎn)的橫坐標(biāo)縮小到原來(lái)的一半(縱坐標(biāo)不變),得到函數(shù)的圖象,則下列結(jié)論正確的是( )
A.的最小正周期為B.的圖象關(guān)于直線(xiàn)對(duì)稱(chēng)
C.的一個(gè)零點(diǎn)為D.在上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“鍛煉達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表;
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
并通過(guò)計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?
(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出5人,進(jìn)行體育鍛煉體會(huì)交流,再?gòu)倪@5人中選出2人作重點(diǎn)發(fā)言,求作重點(diǎn)發(fā)言的2人中,至少1人是女生的概率.
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】心理學(xué)研究表明,人極易受情緒的影響,某選手參加7局4勝制的兵乒球比賽.
(1)在不受情緒的影響下,該選手每局獲勝的概率為;但實(shí)際上,如果前一句獲勝的話(huà),此選手該局獲勝的概率可提升到;而如果前一局失利的話(huà),此選手該局獲勝的概率則降為,求該選手在前3局獲勝局?jǐn)?shù)的分布列及數(shù)學(xué)期望;
(2)假設(shè)選手的三局比賽結(jié)果互不影響,且三局比賽獲勝的概率為,記為銳角的內(nèi)角,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為實(shí)現(xiàn)有效利用扶貧資金,增加貧困村民的收入,扶貧工作組結(jié)合某貧困村水質(zhì)優(yōu)良的特點(diǎn),決定利用扶貧資金從外地購(gòu)買(mǎi)甲、乙、丙三種魚(yú)苗在魚(yú)塘中進(jìn)行養(yǎng)殖試驗(yàn),試驗(yàn)后選擇其中一種進(jìn)行大面積養(yǎng)殖,已知魚(yú)苗甲的自然成活率為0.8.魚(yú)苗乙,丙的自然成活率均為0.9,且甲、乙、丙三種魚(yú)苗是否成活相互獨(dú)立.
(1)試驗(yàn)時(shí)從甲、乙,丙三種魚(yú)苗中各取一尾,記自然成活的尾數(shù)為,求的分布列和數(shù)學(xué)期望;
(2)試驗(yàn)后發(fā)現(xiàn)乙種魚(yú)苗較好,扶貧工作組決定購(gòu)買(mǎi)尾乙種魚(yú)苗進(jìn)行大面積養(yǎng)殖,為提高魚(yú)苗的成活率,工作組采取增氧措施,該措施實(shí)施對(duì)能夠自然成活的魚(yú)苗不產(chǎn)生影響.使不能自然成活的魚(yú)苗的成活率提高了50%.若每尾乙種魚(yú)苗最終成活后可獲利10元,不成活則虧損2元,且扶貧工作組的扶貧目標(biāo)是獲利不低于37.6萬(wàn)元,問(wèn)需至少購(gòu)買(mǎi)多少尾乙種魚(yú)苗?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】瑞士著名數(shù)學(xué)家歐拉在研究幾何時(shí)曾定義歐拉三角形,的三個(gè)歐拉點(diǎn)(頂點(diǎn)與垂心連線(xiàn)的中點(diǎn))構(gòu)成的三角形稱(chēng)為的歐拉三角形.如圖,是的歐拉三角形(H為的垂心).已知,,,若在內(nèi)部隨機(jī)選取一點(diǎn),則此點(diǎn)取自陰影部分的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)為,左右兩頂點(diǎn),點(diǎn)為橢圓上任意一點(diǎn),滿(mǎn)足直線(xiàn)的斜率之積為,且的最大值為4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線(xiàn)與過(guò)點(diǎn)且與軸垂直的直線(xiàn)交于點(diǎn),過(guò)點(diǎn)作,垂足分別為兩點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐,是等邊三角形,,,,,是的中點(diǎn).
(1)求證:直線(xiàn)平面;
(2)求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com