先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a, b.
(1)求直線ax+by+5=0與圓 相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.

(1)  (2)

解析試題分析:(1)先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b,事件總數(shù)為6×6=36.
∵直線ax+by+c=0與圓x2+y2=1相切的充要條件是
即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}
∴滿足條件的情況只有a=3,b=4,c=5;或a=4,b=3,c=5兩種情況.
∴直線ax+by+c=0與圓x2+y2=1相切的概率是
(2)先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b,事件總數(shù)為6×6=36.
∵三角形的一邊長為5∴當a=1時,b=5,(1,5,5)  1種 
當a=2時,b=5,(2,5,5)                  1種
當a=3時,b=3,5,(3,3,5),(3,5,5)    2種  
當a=4時,b=4,5,(4,4,5),(4,5,5)    2種 
當a=5時,b=1,2,3,4,5,6,(5,1,5),(5, 2,5),(5,3,5),
(5,4,5),(5,5,5),(5,6,5)    6種
當a=6時,b=5,6,(6,5,5),(6,6,5)  2種 
故滿足條件的不同情況共有14種答:三條線段能圍成不同的等腰三角形的概率為
考點:直線與圓的位置關(guān)系;幾何概型.
點評:古典概型要求所有結(jié)果出現(xiàn)的可能性都相等,強調(diào)所有結(jié)果中每一結(jié)果出現(xiàn)的概率都相同.弄清一次試驗的意義以及每個基本事件的含義是解決問題的前提,正確把握各個事件的相互關(guān)系是解決問題的關(guān)鍵.解決問題的步驟是:計算滿足條件的基本事件個數(shù),及基本事件的總個數(shù),然后代入古典概型計算公式進行求解.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取12件和5件,測量產(chǎn)品中微量元素x,y的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):

編號
1
2
3
4
5
x
169
178
166
175
180
y
75
80
77
76
81
  (1)已知甲廠生產(chǎn)的產(chǎn)品共84件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;
(2)當產(chǎn)品中的微量元素x,y滿足x≥175且y≥75,該產(chǎn)品為優(yōu)等品,
①用上述樣本數(shù)據(jù)估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量;
②從乙廠抽出的上述5件產(chǎn)品中,隨機抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及其期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

按照新課程的要求, 高中學生在每學期都要至少參加一次社會實踐活動(以下簡稱活動). 該校高2010級一班50名學生在上學期參加活動的次數(shù)統(tǒng)計如圖所示.
(I)求該班學生參加活動的人均次數(shù);(II)從該班中任意選兩名學生,求他們參加活動次數(shù)恰好相等的概率
(III)從該班中任選兩名學生,用表示這兩人參加活動次數(shù)之差的絕對值,求隨機變量的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān).現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,在將兩組工人的日平均生產(chǎn)件數(shù)分成5組: ,,,,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的頻率.
(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成的列聯(lián)表,并判斷是否有的把握認為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?
  
附表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

每一個父母都希望自己的孩子能升上比較理想的中學,于是就催生了“擇校熱”,這樣“擇!钡慕Y(jié)果就導致了學生在路上耽誤的時間增加了.若某生由于種種原因,每天只能6:15騎車從家出發(fā)到學校,途經(jīng)5個路口,這5個路口將家到學校分成了6個路段,每個路段的騎車時間是10分鐘(通過路口的時間忽略不計),假定他在每個路口遇見紅燈的概率均為,且該生只在遇到紅燈或到達學校才停車.對每個路口遇見紅燈的情況統(tǒng)計如下:

紅燈
1
2
3
4
5
等待時間(秒)
60
60
90
30
90
(1)設(shè)學校規(guī)定7:20后(含7:20)到校即為遲到,求這名學生遲到的概率;
(2)設(shè)表示該學生第一次停車時已經(jīng)通過的路口數(shù),求它的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形的頂點)處都種了一株相同品種的作物。根據(jù)歷年的種植經(jīng)驗,一株該種作物的年收貨量(單位:kg)與它的“相近”作物株數(shù)之間的關(guān)系如下表所示:

X
1
2
3
4
Y
51
48
45
42
 
這里,兩株作物“相近”是指它們之間的直線距離不超過1米。
(Ⅰ)完成下表,并求所種作物的平均年收獲量;
Y
51
48
45
42
頻數(shù)
 
4
 
 
 (Ⅱ)在所種作物中隨機選取一株,求它的年收獲量至少為48kg的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某小組共有五位同學,他們的身高(單位:米)以及體重指標(單位:千克/米2
如下表所示:

 
A
B
C
D
E
身高
1.69
1.73
1.75
1.79
1.82
體重指標
19.2
25.1
18.5
23.3
20.9
 
(Ⅰ)從該小組身高低于的同學中任選人,求選到的人身高都在以下的概率
(Ⅱ)從該小組同學中任選人,求選到的人的身高都在以上且體重指標都在中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在一次購物抽獎活動中,假設(shè)某6張券中有一等獎 券1張,可獲價值50元的獎品;有二等獎券1張,每張可獲價值20元的獎品;其余4張沒有獎.某顧客從此6張中任抽1張,求:
(1)該顧客中獎的概率;
(2)該顧客參加此活動可能獲得的獎品價值的期望值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

今年我國部分省市出現(xiàn)了人感染H7N9禽流感確診病例,各地家禽市場受其影響生意冷清.A市雖未發(fā)現(xiàn)H7N9疑似病例,但經(jīng)抽樣有20%的市民表示還會購買本地家禽.現(xiàn)將頻率視為概率,解決下列問題:
(Ⅰ)從該市市民中隨機抽取3位,求至少有一位市民還會購買本地家禽的概率;
(Ⅱ)從該市市民中隨機抽取位,若連續(xù)抽取到兩位愿意購買本地家禽的市民,或
抽取的人數(shù)達到4位,則停止抽取,求的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案